Menu Outline Exercise Questions Appendices Lectures Student Projects Books Sections Introduction Atoms Molecules Crystal Structure Crystal Diffraction Crystal Binding Photons Phonons Electrons Band Model Crystal Physics Semiconductors

PHY.K02UF Molecular and Solid State Physics

## The first Brilluoin zone of a body centered cubic lattice

$\large \vec{k}=u\vec{b}_1+v\vec{b}_2+w\vec{b}_3$ : $(u,v,w)$

 Symmetry points  (u,v,w) [kx,ky,kz] Point group Γ: (0,0,0) [0,0,0] m3m H: (-1/2,1/2,1/2) [0,0,2π/a] m3m P: (1/4,1/4,1/4) [π/a,π/a,π/a] 43m N: (0,1/2,0) [0,π/a,π/a] mmm $\large \overline{\Gamma N}=\frac{\sqrt{2}\pi}{a},\,\overline{\Gamma P}=\frac{\sqrt{3}\pi}{a},\,\overline{\Gamma H}=\frac{2\pi}{a}$ Symmetry lines Point group Δ: (-v,v,v)  0 < v < 1/2 4mm Λ: (w,w,w)  0 < w < 1/4 3m Σ: (0,v,0)  0 < v < 1/2 mm2 F: (-1/2 +3w,1/2-w,1/2-w)  0 < w < 1/4 3m D: (u,1/2-u,u)  0 < u < 1/4 mm2 G: (-u,1/2,u)  0 < u < 1/2 mm2

The real space and reciprocal space primitive translation vectors are:

$$\large \vec{a}_1=\frac{a}{2}(\hat{x}+\hat{y}-\hat{z}),\quad \vec{a}_2=\frac{a}{2}(-\hat{x}+\hat{y}+\hat{z}),\quad\vec{a}_3=\frac{a}{2}(\hat{x}-\hat{y}+\hat{z}),\\ \large \vec{b}_1=\frac{2\pi}{a}(\hat{k}_x+\hat{k}_y),\quad \vec{b}_2=\frac{2\pi}{a}(\hat{k}_y+\hat{k}_z),\quad\vec{b}_3=\frac{2\pi}{a}(\hat{k}_x+\hat{k}_z).$$

The first Brillouin zone of an bcc lattice has the same shape (a rhombic dodecahedron) as the Wigner-Seitz cell of a fcc lattice. Some crystals with an bcc Bravais lattice are Li, Na, K, Cs, V, Cr, Fe, Nb, Mo, Rb, Ba, Ta.