Menu ▼
Outline
Exercise Questions
Appendices
Lectures
Student Projects
Books
Sections ▼
Introduction
Atoms
Molecules
Crystal Structure
Diffraction
Crystal Binding
Photons
Phonons
Electrons
Energy Bands
Crystal Physics
Semiconductors
PHY.K02UF Molecular and Solid State Physics
Course outline
Introduction
Review of atomic physics
(pdf v.2018)
The solutions to the Schrödinger equation for the hydrogen atom
Atomic orbitals
1s
,
2s
,
2p
z
The Orbitron, another tool to visualize atomic orbitals
Slater's rules
Helium
Many-electron wavefunctions
Slater determinants
W
Singlet and triplet states
Exchange
W
The intractability of the Schrödinger equation
Many-electron atoms
Molecules
(pdf v.2018)
Molecular orbital theory
W
A quantum mechanical description of molecules
W
The Born-Oppenheimer approximation
W
Many-electron wavefunctions
Bond potentials
Rotational states
Vibrational states
Harmonic oscillator
Solving the molecular orbital Hamiltonian
Linear combination of atomic orbitals (LCAO)
W
Overlap matrix elements
Molecular hydrogen ion H
2
+
Molecular hydrogen H
2
Conjugated rings
,
Benzene
Conjugated chains
CO
,
NO
Valence bond theory
Heitler-London theory
Numerically calculated molecular orbitals
Carbon monoxide CO
,
Carbon dioxide CO
2
,
Water H
2
O
,
Hydrogen sulfide H
2
S
,
Nitrogen N
2
,
Ammonia NH
3
,
Methane CH
4
,
Ethene C
2
H
4
,
Ethane C
2
H
6
,
Butadiene C
4
H
6
,
Benzene C
6
H
6
,
Hexatriene C
6
H
8
Programs to calculate molecular orbitals
GAMESS
,
Gaussian
,
Quantum Espresso
,
FHI-aims
Rotational and vibrational energy levels of some diatomic molecules
Chemical bonds
Covalent bond
W
σ-bonds
W
π-bonds
W
sp, sp², sp³ orbitals
Double bond
W
Triple bond
W
Ionic bond
W
Polar bond
W
Metallic bond
W
Van der Waals bond
Hydrogen bond
W
Visualization tools
JSmol molecule viewer
MolView
(
MolView tutorial
),
Speck
,
Avogadro
,
ChemDoodle
,
NGLView (an IPython/Jupyter interactive widget)
Crystal structure
Crystal structure
W
Unit cell
W
Bravais lattices
W
Miller indices
W
Wigner Seitz cell
W
Drawing Wigner-Seitz cells in two dimensions
Drawing Wigner-Seitz cells in three dimensions
Asymmetric unit
Symmetries
Point groups
W
Space groups
W
Space Group → Bravais Lattice, Point Group
Examples of crystal structures
simple cubic
,
fcc
,
bcc
,
hcp
,
dhcp
,
diamond
,
silicon
,
zincblende
,
ZnO wurzite
,
SiC 4H
,
NaCl
,
CsCl
,
perovskite
,
graphite
,
hexagonal boron nitride
,
CaF
2
,
Fe
3
C
,
YBa
2
Cu
3
O
7
,
black phosphorus
,
Spinel MgAl
2
O
4
,
Magnetite Fe
3
O
4
,
double perovskite Sr
2
FeMoO
6
,
ZIF8
,
ZnO (rocksalt)
,
ZrO
2
CIF files and programs to visualize crystal structures
Mirror of the NRL Crystal Lattice site
Crystal binding
Molecular crystals
W
Ionic crystals
W
Madelung constant
W
Bulk modulus
W
Crystal diffraction
Periodic functions
Fourier series
Fourier series in 1-D
Reciprocal lattices
Fourier series in 2-D
Fourier series in 3-D
Plane waves and reciprocal space
Fourier transforms
Plotting Fourier transforms
Interference of scattered waves
Brillouin zones
W
Brillouin zones of 2D Bravais lattices
Brillouin zones of 3D Bravais lattices
Drawing 3D Brillouin zones
Symmetry points and lines:
Simple Cubic
,
Face Centered Cubic
,
Body Centered Cubic
,
Hexagonal
,
Rhombohedral
,
Simple Tetragonal
,
Body Centered Tetragonal
,
Simple Orthorhombic
,
Base Centered Orthorhombic
,
Face Centered Orthorhombic
,
Body Centered Orthorhombic
,
Simple Monoclinic
,
Base Centered Monoclinic
,
Triclinic
Symmetry points of 2D lattices:
Square
,
Hexagonal
,
Rectangular
,
Centered Rectangular
,
Oblique
Atomic form factors
X-ray atomic form factors
Electron atomic form factors
Structure factor
W
Bragg diffraction
W
The reciprocal lattice vector
G
hkl
is orthogonal to the (
hkl
) plane.
Laue condition
W
The number of diffraction peaks observed
Ewald sphere
W
Applications of diffraction
powder diffraction
W
American Mineralogist Crystal Structure Database (contains diffraction data)
Neutron diffraction
W
Electron diffraction
W
LEED
W
Photons
Photons in vacuum
Review of Maxwell's unification of electromagnetism with optics
W
Quantization of the normal mode solutions to the wave equation
W
Thermodynamic properties of light
Planck's radiation law
W
Planck curve for black body radiation
Wien's displacement law, λ
max
= 2.8977685 × 10
-3
/
T
m K
W
Stefan-Boltzmann law,
I
= σ
T
4
W/m²
W
Internal energy density
W
Specific heat
W
Radiation pressure
W
Entropy
W
Table summarizing the results of the quantization of the wave equation
Light in one-dimensional layered material
Photonic crystals
W
Empty lattice approximation:
simple cubic
,
fcc
,
bcc
,
hexagonal
,
tetragonal
,
body centered tetragonal
,
orthorhomic
,
simple monoclinic
Plane wave method
Table of photonic crystals
Lattice Vibrations and Phonons
Normal modes and phonons
Using complex numbers to represent sinusoidal oscillations
Linear chain
Linear chain with two different masses
fcc with linear springs to nearest neighbors
bcc with linear springs to nearest neighbors and next nearest neighbors
simple cubic with linear springs to nearest neighbors and next nearest neighbors
Jupyter python notebook for calculating phonon dispersion equations
Animations of some optical modes
Phonon contribution to the thermodynamic properties of solids
Density of states
linear chain
Einstein model
Debye model
linear chain with two masses
Ag-fcc
,
Al-fcc
,
AlN
,
Fe-bcc
,
GaN
,
Mg-hcp
,
Mo-bcc
,
Si-diamond
,
α-Sn
,
β-Sn
,
Ta-bcc
,
Tb-hcp
,
Ti-hcp
,
W-bcc
,
ZnO (rocksalt)
,
ZnO (zincblende)
,
ZnO (wurtzite)
,
Zr-hcp
Energy spectral density
u
(ω,
T
)
Internal energy density
u
(
T
)
Specific heat
c
v
(
T
)
Helmholtz free energy density
f
(
T
)
Entropy density
s
(
T
)
Table summarizing the thermodynamic properties of phonons
Kinetic theory
Thermal conductivity
Electrons
Thermodynamic properties of free, noninteracting electrons
Free electron model in 1-D
Free electron model in 2-D
Free electron model in 3-D
Fermi function
Internal energy density
Specific heat
Helmholtz free energy density
Entropy
Table of thermodynamic properties of free electrons
Sommerfeld expansion
Energy bands
Bloch theorem
Bloch waves in one dimension
Band structure calculations
Kronig Penney Model
One-dimensional potentials
Hill's equation: Linear second-order differential equations with periodic coefficients
Empty lattice approximation:
simple cubic
,
fcc
,
bcc
,
hexagonal
,
tetragonal
,
body centered tetragonal
,
orthorhombic
,
simple monoclinic
Brillouin zones of 2d Bravais lattices
Fermi surface of a two-dimensional square lattice
Fermi surfaces of some three-dimensional lattices
Plane wave method, central equations
Nearly free electron model
Tight binding
Table of tight binding band structure calculations
Some band structure calculations:
Cr
,
Li bcc
,
GaAs
,
GaN
,
GaP
,
Ge
,
InAs
,
6H SiC
,
V
Photoemission Spectroscopy (UPS XPS, ARPES, PEEM)
Metals, semimetals, semiconductors, insulators
Numerical determination of the thermodynamic properties of metals
Chemical potential μ(
T
)
Energy spectral density
u
(
E,T
)
Internal energy density
u
(
T
)
Specific heat
c
v
(
T
)
Helmholtz free energy density
f
(
T
)
Grand potential density φ(
T
)
Calculated electron density of states
Al fcc
,
Au fcc
,
Cu fcc
,
Cr bcc
,
Li bcc
,
Na bcc
,
Pt fcc
,
W bcc
,
Si diamond
,
Fe bcc
,
Ni fcc
,
Co fcc
,
Mn bcc
,
Cr bcc
,
Gd hcp
,
Pd fcc
,
Pd
3
Cr
,
Pd
3
Mn
,
PdCr
,
PdMn
,
GaN
,
6H SiC
,
GaAs
,
GaP
,
Ge
,
InAs
,
V bcc
Separable square wave potentials
Materials Project
Kinetic theory
Ballistic transport
Diffusive transport
Drift and diffusion simulation
Ohm's law
Mattheissen's rule
Hall effect
Thermal conductivity
Wiedermann-Franz law
Lorentz number
Summary: Electron Band Model
Crystal physics
Stress and strain
Einstein notation for tensors
W
Review of statistical physics
Intrinsic symmetries
Maxwell relations
W
Thermodynamic properties
Pyroelectricty
W
Pyromagnetism
Piezoelectricty
W
Piezomagnetism
W
Electrocaloric effect
W
Electrostriction
W
Magnetostriction
W
Thermal expansion
W
Groups and symmetry
Table of crystal classes and their associated point groups
Flowchart to determine the point group of a crystal
Symmetric and asymmetric tensors
SGTE data for pure elements
- The Gibbs energy as a function of temperature for many elements.
Semiconductors
Role of semiconductors in technology
Band structure of semiconductors
Conduction band
E
c
, valence band
E
v
, band gap
E
g
Direct and indirect band gaps
W
Absorption and emission of photons and phonons
Simplified band structures from the
NSM Archive
Direct band gap:
InAs
,
InP
,
GaAs
,
InN
,
GaN (zincblende)
,
GaN (wurtzite)
,
AlN
Indirect band gap:
Ge
,
Si
,
GaP
,
Ga
2
O
3
Electrons and holes
Effective mass
W
Holes
W
Crystal momentum
W
Ohm's law
Boltzmann approximation
Intrinsic semiconductors
W
Effective density of states
N
c
,
N
v
The density of electrons in the conduction band
n
=
N
c
exp((μ -
E
c
)/k
B
T
)
The density of holes in the valence band
p
=
N
v
exp((
E
v
- μ)/
k
B
T
)
Law of mass action:
np = N
c
N
v
exp(-
E
g
/k
B
T
)
The intrinsic carrier density
n
i
=(
N
c
N
v
)
1/2
exp(-
E
g
/2
k
B
T
)
Chemical potential of intrinsic semiconductors
Thermodynamic properties of intrinsic semiconductors
Intrinsic semiconductors with a split-off band
Table summarizing the thermodynamic properties of semiconductors in the Boltzmann approximation
Extrinsic semiconductors
Doping
W
Extrinsic carrier densities
Chemical potential in extrinsic semiconductors
W
Determining chemical potential from the charge neutrality condition
Semiconductor materials
Silicon
,
SiC 4H
Semiconductor devices
pn junctions
diodes
Light emitting diodes
Solar cells
Laser diodes
Transistors
Transport in semiconductors
Ohm's law: σ = (
ne
μ
n
+
pe
μ
p
)
Mobility
W