Menu ▼
Outline
Exercise Questions
Appendices
Lectures
Books
Sections ▼
Introduction
Atoms
Molecules
Crystal Structure
Diffraction
Crystal Binding
Photons
Phonons
Electrons
Energy Bands
Crystal Physics
Semiconductors
PHY.K02UF Molecular and Solid State Physics
Course outline
Introduction
Review of atomic physics
(pdf v.2018)
The solutions to the Schrödinger equation for the hydrogen atom
Atomic orbitals
1s
,
2s
,
2p
z
The Orbitron, another tool to visualize atomic orbitals
Slater's rules
Helium
Many-electron wavefunctions
Slater determinants
W
Singlet and triplet states
Exchange
W
The intractability of the Schrödinger equation
Many-electron atoms
Molecules
(pdf v.2018)
Molecular orbital theory
W
A quantum mechanical description of molecules
W
The Born-Oppenheimer approximation
W
Many-electron wavefunctions
Bond potentials
Rotational states
Vibrational states
Harmonic oscillator
Solving the molecular orbital Hamiltonian
Linear combination of atomic orbitals (LCAO)
W
Overlap matrix elements
Molecular hydrogen ion H
2
+
Molecular hydrogen H
2
Conjugated rings
,
Benzene
Conjugated chains
CO
,
NO
Valence bond theory
Heitler-London theory
Numerically calculated molecular orbitals
Carbon monoxide CO
,
Carbon dioxide CO
2
,
Water H
2
O
,
Hydrogen sulfide H
2
S
,
Nitrogen N
2
,
Ammonia NH
3
,
Methane CH
4
,
Ethene C
2
H
4
,
Ethane C
2
H
6
,
Butadiene C
4
H
6
,
Benzene C
6
H
6
,
Hexatriene C
6
H
8
Programs to calculate molecular orbitals
GAMESS
,
Gaussian
,
Quantum Espresso
,
FHI-aims
Rotational and vibrational energy levels of some diatomic molecules
Chemical bonds
Covalent bond
W
σ-bonds
W
π-bonds
W
sp, sp², sp³ orbitals
Double bond
W
Triple bond
W
Ionic bond
W
Polar bond
W
Metallic bond
W
Van der Waals bond
Hydrogen bond
W
Visualization tools
JSmol molecule viewer
MolView
(
MolView tutorial
),
Speck
,
Avogadro
,
ChemDoodle
,
NGLView (an IPython/Jupyter interactive widget)
Crystal structure
Crystal structure
W
Unit cell
W
Bravais lattices
W
Miller indices
W
Wigner Seitz cell
W
Drawing Wigner-Seitz cells in two dimensions
Drawing Wigner-Seitz cells in three dimensions
Asymmetric unit
Symmetries
Point groups
W
Space groups
W
Space Group → Bravais Lattice, Point Group
Examples of crystal structures
simple cubic
,
fcc
,
bcc
,
hcp
,
dhcp
,
diamond
,
silicon
,
zincblende
,
wurtzite
,
SiC 4H
,
NaCl
,
CsCl
,
perovskite
,
graphite
,
hexagonal boron nitride
,
CaF
2
,
Fe
3
C
,
YBa
2
Cu
3
O
7
,
black phosphorus
,
Spinel MgAl
2
O
4
,
Magnetite Fe
3
O
4
,
double perovskite Sr
2
FeMoO
6
,
ZIF8
,
ZnO (rocksalt)
,
ZnO wurzite
,
ZrO
2
CIF files and programs to visualize crystal structures
The AFLOW standard encyclopedia of crystallographic prototypes
Crystal binding
Molecular crystals
W
Ionic crystals
W
Madelung constant
W
Bulk modulus
W
Periodicity, Fourier Series, and Reciprocal Space
Fourier series in one dimension
Review of exponential functions
Three-dimensional periodic functions
Reciprocal space
Periodicity conditions
Fourier series in 2-D
Fourier series in 3-D
For the exam
Crystal diffraction
Interference of scattered waves
Intensity of the scattered waves
Ewald sphere
Atomic form factors
Structure factors
Brillouin zones
Netplanes and lattice planes
Bragg diffraction
Powder diffraction
Electron diffraction
Low Energy Electron Diffraction
Neutron Diffraction
For the exam
Lattice Vibrations and Phonons
Normal Modes and Phonons
Using complex numbers to describe oscillations
The translation operator
1-d chain of atoms
1-d chain of atoms with two different masses
Phonons in 3D crystals
Phonon dispersion of an fcc crystal
Calculating the phonon dispersion of an fcc crystal
Plotting the phonon dispersion of an fcc crystal
Phonon density of states of an fcc crystal
Phonon dispersion of a bcc crystal
Plotting the phonon dispersion of a bcc crystal
Phonon density of states of a bcc crystal
Phonon dispersion of a simple cubic crystal
Plotting the phonon dispersion of a simple cubic crystal
Phonon density of states of a simple cubic crystal
Phonons of crystals with more atoms in the basis
Animations of some optical modes
Phonon data in databases
Measuring phonon dispersion
Phonon contribution to the thermodynamic properties of crystals
For the exam
Electrons
Electrons in a square well potential
The valence electrons of metals
The valence electrons become unbound
Free-electron model of metals
Sommerfeld expansion
For the exam
Energy bands
Bloch theorem
Bloch waves in one dimension
Band structure calculations
Kronig Penney Model
One-dimensional potentials
Hill's equation: Linear second-order differential equations with periodic coefficients
Empty lattice approximation:
simple cubic
,
fcc
,
bcc
,
hexagonal
,
tetragonal
,
body centered tetragonal
,
orthorhombic
,
simple monoclinic
Brillouin zones of 2d Bravais lattices
Fermi surface of a two-dimensional square lattice
Fermi surfaces of some three-dimensional lattices
Plane wave method, central equations
Nearly free electron model
Tight binding
Table of tight binding band structure calculations
Some band structure calculations:
Cr
,
Li bcc
,
GaAs
,
GaN
,
GaP
,
Ge
,
InAs
,
6H SiC
,
V
Photoemission Spectroscopy (UPS XPS, ARPES, PEEM)
Metals, semimetals, semiconductors, insulators
Numerical determination of the thermodynamic properties of metals
Chemical potential μ(
T
)
Energy spectral density
u
(
E,T
)
Internal energy density
u
(
T
)
Specific heat
c
v
(
T
)
Helmholtz free energy density
f
(
T
)
Grand potential density φ(
T
)
Calculated electron density of states
Al fcc
,
Au fcc
,
Cu fcc
,
Cr bcc
,
Li bcc
,
Na bcc
,
Pt fcc
,
W bcc
,
Si diamond
,
Fe bcc
,
Ni fcc
,
Co fcc
,
Mn bcc
,
Cr bcc
,
Gd hcp
,
Pd fcc
,
Pd
3
Cr
,
Pd
3
Mn
,
PdCr
,
PdMn
,
GaN
,
6H SiC
,
GaAs
,
GaP
,
Ge
,
InAs
,
V bcc
Separable square wave potentials
Materials Project
Kinetic theory
Ballistic transport
Diffusive transport
Drift and diffusion simulation
Ohm's law
Mattheissen's rule
Hall effect
Thermal conductivity
Wiedermann-Franz law
Lorentz number
Summary: Electron Band Model
Crystal physics
Stress and strain
Einstein notation for tensors
W
Review of statistical physics
Intrinsic symmetries
Maxwell relations
W
Thermodynamic properties
Pyroelectricty
W
Pyromagnetism
Piezoelectricty
W
Piezomagnetism
W
Electrocaloric effect
W
Electrostriction
W
Magnetostriction
W
Thermal expansion
W
Groups and symmetry
Table of crystal classes and their associated point groups
Flowchart to determine the point group of a crystal
Symmetric and asymmetric tensors
SGTE data for pure elements
- The Gibbs energy as a function of temperature for many elements.
Semiconductors
Role of semiconductors in technology
Band structure of semiconductors
Conduction band
E
c
, valence band
E
v
, band gap
E
g
Direct and indirect band gaps
W
Absorption and emission of photons and phonons
Simplified band structures from the
NSM Archive
Direct band gap:
InAs
,
InP
,
GaAs
,
InN
,
GaN (zincblende)
,
GaN (wurtzite)
,
AlN
Indirect band gap:
Ge
,
Si
,
GaP
,
Ga
2
O
3
Electrons and holes
Effective mass
W
Holes
W
Crystal momentum
W
Ohm's law
Boltzmann approximation
Intrinsic semiconductors
W
Effective density of states
N
c
,
N
v
The density of electrons in the conduction band
n
=
N
c
exp((μ -
E
c
)/k
B
T
)
The density of holes in the valence band
p
=
N
v
exp((
E
v
- μ)/
k
B
T
)
Law of mass action:
np = N
c
N
v
exp(-
E
g
/k
B
T
)
The intrinsic carrier density
n
i
=(
N
c
N
v
)
1/2
exp(-
E
g
/2
k
B
T
)
Chemical potential of intrinsic semiconductors
Thermodynamic properties of intrinsic semiconductors
Intrinsic semiconductors with a split-off band
Table summarizing the thermodynamic properties of semiconductors in the Boltzmann approximation
Extrinsic semiconductors
Doping
W
Extrinsic carrier densities
Chemical potential in extrinsic semiconductors
W
Determining chemical potential from the charge neutrality condition
Semiconductor materials
Silicon
,
SiC 4H
Semiconductor devices
pn junctions
diodes
Light emitting diodes
Solar cells
Laser diodes
Transistors
Transport in semiconductors
Ohm's law: σ = (
ne
μ
n
+
pe
μ
p
)
Mobility
W