Preliminary Ventilation and Cooling during the Construction of the Brenner Base Tunnel

Andreas Busslinger (*), Romed Insam (**)

(*) HBI Haerter AG, Switzerland

(**) BBT SE, Austria
Content

1. Introduction Brenner Base Tunnel
2. Design objectives preliminary ventilation / cooling
3. Base data
4. Methodology ventilation / cooling design
5. Concepts preliminary ventilation / cooling
6. Specification / performance data
7. Conclusions
1. Introduction Brenner Base Tunnel

Brenner Base Tunnel:

- key element of European high performance railway network
- amongst world’s longest traffic tunnels (64 km)
- construction (5 main construction lots) underway
- increased rock temperatures expected
2. Design objectives ventilation / cooling

General objectives:

- provision of decent tunnel climate during normal operation
- support of rescue and intervention in case of emergency
- smallest possible restriction of construction progress
- high flexibility regarding changes of construction
3. Base data

Essential base data of ventilation / cooling design:

- construction schedule (interaction of activities)
- construction method (TBM, drill & blast)
- logistics (transport properties, mucking)
4. Methodology ventilation / cooling design

Thresholds
OCCUPATIONAL MEDICINE
(fresh air requirements, max. temperatures, etc.)

Definition
REQUIRED FRESH AIR AMOUNT AT WORK SITES

Concept
PRELIMINARY TUNNEL LOGISTICS
(construction schedule, required staff/machinery, available space, etc.)

Pre-Settings
TUNNEL LOGISTICS

Specification
PRELIMINARY VENTILATION SYSTEM

Concept
PRELIMINARY COOLING

Specification
PRELIMINARY COOLING SYSTEM

Definition
REQUIRED COOLING POWER AT WORK SITES

Definition
REQUIRED FRESH AIR AMOUNT AT WORK SITES
5. Concepts preliminary ventilation

General characteristics:

- individual concept for each construction phase
- focus on peak construction performance
- every portal used for air supply / removal.
- fresh air requirements achieved
- no substantial obstruction of tunnel construction
5. Concepts preliminary cooling

Main principles:

- local heat removal with air cooling machines at work sites
- heat transport via cooling water in pipes
- heat disposal to the ambient with cooling towers
- low impact on the ambient
- flexible / nearly fail safe operation
6. Specification / performance data

Preliminary ventilation:

- specification of fans and air ducts based on concept and calculations
- outline: 56 main fans, 16 auxiliary fans, 200 km air duct, 172 air barriers, 8 air locks
- performance: total power demand 25 MW, fresh air supply 2'100 m3/s
- to be verified in execution
6. Specification / performance data

Preliminary cooling:

- specification of air cooling machines, pipes, water pumps and cooling towers based on tunnel climate simulations (BAUKLIMA)
- outline: 6 cooling towers, 94 pumps, 300 km pipe, 228 air cooling machines
- performance: demand 50 MW, cooling 70 MW
- to be verified in execution
7. Conclusions

- Intense tunnelling requires a great deal of fresh air challenged by limited accessibility.
- Concepts only call for minor additional excavation (no additional shafts and tunnels).
- Diligent analysis of construction phases ensures uninterrupted ventilation/cooling.
- Ventilation/cooling design are mainly based on occupational medicine and tunnel logistics.
- In order to specify and verify preliminary ventilation/cooling adequate simulation tools must be used (e.g. the code BAUKLIMA) particularly considering interaction of ventilation and cooling.
- A module based design of ventilation and cooling rather allows for changes in construction schedule (e.g. can be adapted easier) than a fixed or centralised solution.
- Changes of tunnel logistics relating to preliminary ventilation and cooling must be continuously checked.
Thank you for your attention!