Kittel Problem 1.3

Show that the c/a ratio for an ideal hexagonal close-packed structure is $\sqrt{8/3} = 1.633$. If c/a is significantly larger than this value, the crystal structure may be thought of as composed of planes of closely packed atoms, the planes being loosely packed.

h...height of the equilateral triangle

a...lattice constant

$$h = \sqrt{a^2 - \left(\frac{a}{2}\right)^2} = \sqrt{1 - \frac{1}{4}} * a = \sqrt{\frac{3}{4}} * a$$

Distance x from an atom to the middle of the triangle:

$$x = \frac{2}{3} * h = \frac{2}{3} * \sqrt{\frac{3}{4}} * a$$

$$x = \frac{1}{\sqrt{3}} * a$$

$$\frac{c}{2} = \sqrt{a^2 - x^2} = \sqrt{a^2 - \frac{1}{3}a^2} = \sqrt{\frac{2}{3}} * a$$

$$\frac{c}{a} = \sqrt{\frac{8}{3}}$$