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1 Original paper

J. Faller, C. Vidaurre, T. Solis-Escalante, C. Neuper and R. Scherer (2012)
Autocalibration and recurrent adaptation: Towards a plug and play online ERD-
BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering,
20(3), 313-319. Doi: 10.1109/tnsre.2012.2189584.

The data was recorded at the Institute for Knowledge Discovery, Graz University
of Technology, Graz, Austria.

2 Abstract of the original paper

System calibration and user training are essential for operating motor imagery
based brain-computer interface (BCI) systems. These steps are often unintu-
itive and tedious for the user, and do not necessarily lead to a satisfactory level
of control. We present an Adaptive BCI framework that provides feedback after
only minutes of autocalibration in a two-class BCI setup. During operation, the
system recurrently reselects only one out of six predefined logarithmic band-
power features (10 to 13 and 16 to 24 Hz from Laplacian derivations over C3, Cz
and C4), specifically, the feature that exhibits maximum discriminability. The
system then retrains a linear discriminant analysis classifier on all available data
and updates the online paradigm with the new model. Every retraining step
is preceded by an online outlier rejection. Operating the system requires no
engineering knowledge other than connecting the user and starting the system.
In a supporting study, ten out of twelve novice users reached a criterion level of
above 70 % accuracy in one to three sessions (10 to 80 min online time) of train-
ing, with a median accuracy of 80.2± 11.3 % in the last session. We consider
the presented system a positive first step towards fully autocalibrating motor
imagery BCIs.
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3 Materials and Methods

3.1 Data acquisition

We acquired the EEG from three Laplacian derivations ([3]), 3.5 cm (center-to-
center) around the electrode positions (according to International 10-20 System
of Electrode Placement) C3 (FC3, C5, CP3 and C1), Cz (FCz, C1, CPz and C2)
and C4 (FC4, C2, CP4 and C6). The acquisition hardware was a g.GAMMAsys
active electrode system along with a g.USBamp amplifier (g.tec, Guger Tech-
nologies OEG, Graz, Austria). The system sampled at 512 Hz, with a bandpass
filter between 0.5 and 100 Hz and a notch filter at 50 Hz. The order of the
channels in the data is FC3, FCz, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CPz,
CP4.

3.2 Structure of the data file

The data is stored in “.mat” files. These can be loaded with Matlab (Mathworks,
Natick, MA, USA). Every file stores the data collected for one subject in one
day (recording session). The structure data in every file holds five variables: X,
is the EEG signal in µV in a matrix (datapoints × channels) of double values.
The array y, holds the true labels for every trial according to the visual cues that
were displayed in the paradigm during the recording. Label 1 indicates hand
movement imagery, while label 2 indicates movement imagery of both feet. The
array trial, indicates the position in datapoints where every trial starts. fs, is
the sampling rate and classes indicates that class 1 (label 1) was right hand
movement imagery and class 2 (label 2) was movement imagery of both feet.

3.3 Online BCI system

The BCI system was based on a synchronous, two-class Graz BCI training
paradigm ([2]), that used LDA classification on one from six logarithmic band-
power features to provide feedback. In each run, the system randomly presented
20 trials for each of the two conditions (sustained hand or feet movement im-
agery). Figure 1 explains the trial structure.

We extended the online BCI system to trialwise send EEG data to a stan-
dalone Matlab Optimization Instance and receive classifier-model updates online
in return (see Figure 2). The Matlab Optimization Instance was running on the
same machine. All communication was carried out in the trial pauses using a
custom socket protocol on top of TCP/IP. In the first run of each session, the
system started without giving feedback. The Optimization Instance gathered a
small set of trials (10 trials per class) for initial training, and then sent the first
set of classifier weights to the online BCI system. The Optimization Instance
then sent weight updates at the start of every new run and whenever it had
5 new trials per class to retrain the classifier during a run.

The online BCI system only provided correct visual feedback, based on the
classifier output to the user. The length of the white colored feedback bar in the
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Figure 1: Trial structure within the synchronous training paradigm. The task
for the user was to perform sustained right hand versus both feet movement
imagery starting from the cue (second 3) to the end of the cross period (sec-
ond 8). A trial started with 3 s of reference period, followed by a brisk audible
cue and a visual cue (arrow right for right hand, arrow down for both feet) from
second 3 to 4.25. The activity period, where the users received feedback, lasted
from second 4 to 8. There was a random 2 to 3 s pause between the trials.
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Figure 2: Architecture Overview Diagram for the Adaptive BCI framework.

direction of the cue-arrow, was mapped directly from the current distance from
the LDA hyperplane. We chose to only display correct feedback to motivate the
participants as much as possible ([1]).

3.4 Participants and task

Twelve able-bodied, BCI-novice volunteers (seven male, five female, age 24.8 ±
3.0 years) participated in our BCI-study. We decided to conduct at least two
sessions for each participant to capture inter-session variance. Based on ([4]),
we use a criterion level of 70 % accuracy as the threshold for successful BCI
operation. One additional session was recorded for participants who did not
reach the criterion level in two sessions, to see whether there would be learning
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or training effects. We performed a third measurement for S09 since he/she
showed strong improvement from session 1 to 2 and was only slightly above the
threshold in session 2. The participants performed five runs of 40 trials (i.e.
200 trials) in each session. The pure measurement-time per session was 38 min,
however including briefing, montage (10 min) and pauses, 1 session lasted around
90 minutes. All subjects were right handed and had normal or corrected to
normal vision. None of the volunteers suffered from neurological or psychological
disorders or had been using medication which could have adversely affected
the measurement. The measurements for each participant were carried out on
different days within a time frame of 5 days. The volunteers were compensated
with 7.5 Euro per hour. The experimenter thoroughly informed the volunteers
beforehand about the nature of the experiment and the specifics of the tasks.
All participants gave written, informed consent.

The task was to relax and to perform sustained, kinesthetic movement im-
agery ([5]) during the complete activity period of the presented trials (see Fig-
ure 1). For condition 1 (arrow right), the task was to imagine a palmar grip with
the right hand (CLASS LABEL 1 in the data). The task for condition 2 (arrow
down) was to imagine a plantar extension of both feet (CLASS LABEL 2 in the
data). For the reference period, we instructed the subjects to relax with eyes
open. The participants were seated in a comfortable chair, 60 cm away from the
computer monitor that displayed the paradigm. Their arms were rested on the
table before them. The experimenter sat slightly to the left, behind the partic-
ipant and monitored that the subject adhered to the task. The experimenter
informally interviewed the participants in the pauses how they liked the training
and whether they preferred the brief offline or online training phase.

4 Contact

Please contact Dr. Reinhold Scherer (reini.scherer@gmail.com) or Josef Faller
(josef.faller@gmx.at) for any questions you may have.
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