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1 Introduction
Solid state physics is the study of how atoms arrange themselves into solids and what properties the-
se solids have. From the microscopic structure of solids it is possible to calculate many macroscopic
properties.

2 Quantization

2.1 Schrödinger Equation
The framework of most solid state physics theory is the Schrödinger equation of non relativistic
quantum mechanics:

−~2

2m
∇2Ψ + V (r)Ψ = EΨ (1)

If we want to quantize the motion of some particle, different problems arise due to its properties.
For photons, which have no mass, we don’t know what to put into the mass term of the Schrödinger
equation.
Phonons are related to the vibration of the atoms in the lattice. If we imagine the whole crystal as a
mass-spring system, the normal mode solutions (all components oscillate with the same frequency)
which propagate through it are called Phonons. So if we quantize a Phonon, we don’t know which
mass to take again. Because a phonon represents the vibration of all atoms in the crystal with same
frequency.
Another problem for the Schrödinger Equation in this form is the formulation of the magnetic field.
The potential works fine if the particle moves in a coulomb potential which depends on the position
r . The magnetic field however depends on the velocity, which is not contained in the potential
term V (r).

2.2 Recipe for Quantisation
1. Start with classical equations of motion (EOM) and find the Lagrangian L(qi, q̇i) by inspec-

tion. qi is called the generized coordinate, and q̇i is the generized velocity.
It is often convenient to look out for the normal mode solutions of the system, because the
normal modes move independently from each other. So the quantum equations can be solved
individually.
The Lagrangian:

L = Ekin − Epot (2)

For complicated systems (e.g. the mass is not known) the Lagrangian needs to be constructed
by inspection, so it fulfills the Euler-Lagrange equations:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (3)

2. Conjugated variable:

pi =
∂L

∂q̇i
(4)

3. Legendre-transformation to find the Hamiltonian of the system:

H =
∑
i

piq̇i − L (5)

Remember from Theoretical mechanics:

H = p · v − L = 2 Ekin − (Ekin − Epot) = Ekin + Epot (6)
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4. Quantize the Conjugated variable and formulate Schrödinger Equation

p→ −i~∇.

HΨ(q) = EΨ(q) (7)

2.3 Example: Harmonic Oszillator
The first example how a given system can be quantized is a one dimensional harmonic oscillator.
It’s assumed that just the equation of motion

mẍ = −kx

with m the mass and the spring constant k is known from this system. Now the Lagrangian L must
be constructed by inspection:

L(x, ẋ) =
mẋ2

2
− kx2

2

It is the right one if the given equation of motion can be derived by the Euler-Lagrange eqn. (3),
like in this example. The next step is to get the conjugate variable, the generalized momentum p:

p =
∂L

∂ẋ
= mẋ

Then the Hamiltonian has to be constructed with the Legendre transformation:

H =
∑
i

piq̇i − L =
p2

2m
+
kx2

2
.

With replacing the conjugate variable p with

p→ −i~ ∂

∂x

because of position space1 and inserting in eqn. (48) the Schrödinger equation for the one dimen-
sional harmonic oscillator is derived:

− ~2

2m

∂2Ψ(x)

∂x2
+
kx2

2
Ψ(x) = EΨ(x)

2.4 Example: LC - circuit

Abbildung 1: LC-Circuit [1]

The classical equation descriping the LC-circuit are:

V = L
dI

dt
I = −C dV

dt
(8)

1position space: Ortsraum
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The charge Q on the capacitor is : Q = C · V

Q/C = −Ld
2Q

dt2
compare harmonic oszillator : −Kx = m · a (9)

The form of the equation is quite similar to the one of the harmonic oszillator, so we can construct
the Lagrangian straight forward:

• Lagrangian

L(Q, Q̇) =
LQ̇2

2
− Q2

2C
(10)

• Conjugated Variable:

p =
∂L
∂Q̇

= LQ̇ (11)

• Hamiltonian

H(Q, Q̇) = LQ̇2 − L =
LQ̇2

2
+
Q2

2C
(12)

• Quantize and formulate Schrödinger Equation

p→ i~
∂

∂Q
(13)

− ~2

2L

∂2Ψ(Q)

∂Q2
+
Q2

2C
Ψ(Q) = EΨ(Q)

This recipe of quantization works for every system. Notice the similarity between the LC-circuit
and the Harmonic Oszillator. An experiment could be done where light is shined on the LC-circuit.
It would be absorbed only in units of ~ω, where ω is the oszillation frequency.

2.5 Example: Transmission Line

Abbildung 2: Transmission-line [1]

If you want to understand Dissipation(=loss of energy to by conversion to heat) quantummechani-
cally, the transmission line is good model. The transmission line is basically a chain of LC-circuits,
where waves are carried away.
A resistor is dissipating energy like a transmission line: The current is converted to heat and the
heat flows away by phonons flowing down the transmissionn line.

Additionally to the time dependence on the voltage and current in the simple LC-circuit, there
is a dependence on the space r of the capacitor or inductor.
The voltage of a particular capacitor changes proportional to the spacial change of current (flowing
to the left / to the right)

−dI
dx

= C
dV

dt
(14)

The current in a particular inductor changes proportional to the difference of voltage of the capa-
citors.

−dV
dx

= L
dI

dt
(15)
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Compining these two equation (e.g. time derivative of first one & spacial derivative of second one)
yields the wave equation:

dV 2

dx2
= LC

d2V

dt2
(16)

Solve the wave equation for this system with the normal mode solution:

Vk = V0 exp i(kx− ωt) ...normal mode solution of voltage (17)

Plugging this into the wave equation delivers the dispersion relation:

k2 = LCω2 → ω =
1

LC
k → ω = ck (18)

The transmission line has wavelike solutions, where the frequency is linear proportional to the
wavevector and the proportional constant is the speed of light c = 1√

LC

We can find the relationship between current and voltage and define an impedance:

Z =
V

I
=

√
L

C
(19)

The impedance of the transmission line is not oszillating and is practically equal to the impe-
dance of a comparable resistor. Transmission lines are quantummechanical models for resistors and
dissipating elements.

2.5.1 Quantization of the wave equation

As already mentioned at the beginning the Schrödinger equation can not be used to quantize the
transmission line, because we don’t know which mass to put into the formula. One has to use the
recipe given in chapter: 2.2

• Lagrangian:
If you plug a normal mode solution into the wave equation and take the derivative only
with respect to space you get something like the EOM for the harmonic oszillator. The
equivalent for the mass turns out to be 1 and the equivalent for the spring constant is c2k2.
The Lagrangian has to fulfill the Euler Lagrange Equations and can be found similarly as for
the harmonic oszillator.

Vk = V0 exp i(kx− ωt) c
dV 2

dx2
=
d2V

dt2
(20)

→ −c2k2Vk =
d2Vk
dt2

Vk − c2k2x = 1 · a (21)

L(Vk, V̇k) =
V̇k

2

2
− c2k2

2
V 2
k (22)

• Conjugated variable:

pi =
∂L

∂V̇k
= V̇k (23)

• Legendre-transformation to find the Hamiltonian of the system:

H = V̇kV̇k − L =
V̇k

2

2
+
c2k2

2
V 2
k (24)
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• Quantize the Conjugated variable and formulate Schrödinger Equation

p→ −i~∇ V̇k → −i~
∂

∂Vk

−~2

2

d2Ψ

dV 2
k

+
c2k2

2
V 2
k Ψ = EΨ (25)

The result is quite similar to the form of the harmonic oscillator and the two system have the
same solution. j is the number of photons in the mode of frequency ω

E = ~ω(j +
1

2
) j = 0, 1, 2, ... (26)

ω = c|k| → f =
c

λ
...dispersion relation for wave equation (27)

2.5.2 Ammonia

Abbildung 3: Model of Ammonia [1]

Ammonia is a molecular system which oszillates like a LC-circuit. The Nitrogen sticks out of the
Hydrogen plane either on the one site or the other. These two positions are equivalent in energy
and represent a double well potential. The idea is to apply an electric field and force all Nitrogen
atoms to one site. This corresponds to the overlap of the ground and 1st excited state(The ground
state is symmetric, the first excited antisymmetric so the combination of the two states yields a
spatial probability distribution which peaks only at one site of the ammonia) Due to the different
frequency of the ground- and first excited states, the overlap of these two changes in time, so that
after a while all the nitrogen atoms are at the other site. If one would measure where the nitrogen
atoms are after the electric field was turned of, oscillations like the ones of the LC-circuit would
appear.

This behavior was the reason for the famous discussion about whether Schrödingers cat is alive
or dead. A cat is put in a box with a radio active decaying substance. If there is an decay, the cat
is poisoned and dies. To do an appropriate experiment, you would have to put 1000 cats into 1000
boxes and measure how many die in time. So first you wait 1 second - you open the box and no cat
died. So you wait 10 seconds - a view cats die, you replace them and wait 20 seconds - more cats
die and so on. You would expect a time where you open the box and all cats are alive - this would
be the quantum mechanical oscillation. With cats it doesn’t - they just die. It has to do with how
the dissipation is coupled with the variable being dead or alive.
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2.5.3 Dissipation

Dissipation in solids states physics is important to describe the current flowing e.g. through a metal.
If there is no electric field, all electrons are in the ground state and there are as many left moving
k states as right moving, so they cancel each other out.
If an electric field was applied there are more right moving waves than left moving, a current flows.
The electrons scatter, generate phonons(heat) which is carried away by the transmission line.

2.6 Quantisation of the EM-field
2.6.1 A brief summary of Electrodynamics

A summary of Electrodynamic & FQM, For more detail check out the Advanced Solid State-
homepage Maxwell equations:

∇E =
ρ

ε0
= 0 Gauses law in vacuum (28)

∇B = 0 (29)

∇ x E =
−∂B
∂t

Faradays law (30)

∇ x B = µ0ε0
∂E

∂t
Amperes law (31)

A vectorpotential is defined as:
B = ∇ x A (32)

E = −∇V − ∂A

∂t
(33)

Where the electrostatical potential for vacuum = 0. There are more possible vector potential for
one quantity, so an additional demand can be made, in our case the Coulomb Gauge:

∇A = 0 (34)

Within this Gauge the first 3 equations are self consistent. In Coulomb Gauge all information is
contained in Amperes law.

∇ x B = µ0ε0
∂B

∂t
→ ∇ x ∇ x A = −µ0ε0

∂2A

∂t2
(35)

Use a vector identity (∇A = 0 in Coulomb Gauge):

∇ x ∇ x A = ∇(∇A)−∇2A (36)

Finally results in the wave equation for EM-radiation in vacuum:

c2∇2A =
∂2A

∂t2
c =

1
√
µ0ε0

(37)

If we look for normal mode solutions we get the same answers as for the transmission line
(formally in 3D)

A(r, t) = A · exp i(kr − ωt) (38)
Dispersion relation:

ω = c|k| ↔ f =
c

λ
(39)

If we evaluate the wave equations for the electrostatic field and the magnetic field, it can be
noticed that they propaged in the same direction, but oscillate in normal planes:

E = −∂A
∂t

= −ωA0sin(kxx− ωt)ez (40)

B = ∇ x A = kxA0sin(kxx− ωt)ey (41)
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2.6.2 Quantize

We follow the same procedure to quantize the 3D wave equation as for the transmission line. First
we look for normal mode solutions and take the spacial derivative. The normal mode solutions carry
an index s indicating that there are 2 possible polarization for every direction.
Start out with the wave equation for the EM-field:

c2∇2A =
∂2A

∂t2
(42)

Normal mode solution for the wave vector k:

Ak = As exp i(kr − ωt) (43)

−c2k2As =
∂2A

∂t2
vgl. harm. oszi. −Kx = m · a (44)

• Find the Lagrangian by comparison with harmonic oscillator:

L(As, Ȧs) =
Ȧs

2

2
− c2k2

2
A2
s (45)

• Conjugated variable:

pi =
∂L
∂Ȧk

= Ȧk (46)

• Legendre-transformation to find the Hamiltonian of the system:

H = ȦsȦs − L =
Ȧs

2

2
+
c2k2

2
A2
s (47)

• Quantize the Conjugated variable and formulate Schrödinger Equation

pi → −i~∇ Ȧs → −i~
∂

∂As

−~2

2

d2Ψ

dA2
s

+
c2k2

2
A2
sΨ = EΨ (48)

• Quantum solutions The eigen vectors for this problem will also be the hermite polynomials
and the corresponding eigenenergys are given in the solution of the harmonic oscillator. js
indicates the number of photons in mode s.

Es = ~ω(js +
1

2
) js = 0, 1, 2, .... (49)

Dispersion relation
ws = c|ks| (50)

3 Photons

3.1 Thermodynamic properties of non-interacting bosons
For detailed derivation of the grand canonical partition function Zgr see Script: Statistische Physik
(Von der Linden) or homepage: Fortgeschrittene Festkörperphysik/outline/photons/Thermodynamic
properties of non-interacting bosons

We start out with the grand canonical potential for non-interacting bosons. The difference in
between non interacting bosons and fermions is the occupation of a particular state. For bosons
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we can but from i = 0, 1, 2...∞ particles in a state with energy εi. For non interacting fermions a
state can either be occupied or not (i = 0, 1). With some mathematical clues the grand canonical
partition function can be found:

Zgr =
∏
i

 1

1− exp
(
− εi−µkBT

)
 (51)

Fundamental theorem of statistical physics:

Φ = −kbT ln(Zgr) = kBT
∑
i

ln

[
1− exp

(
µ− εi
kBT

)]
(52)

The sum can be converted in an integral over the density of states (For mathematical completeness
check script: Statistische Physik (VdL):

φ =
Φ

V
= kBT

∞∫
−∞

D(E) ln

[
1− exp

(
µ− E
kBT

)]
dE (53)

The grand canonical potential is defined as:

Φ = −p · dV − S · dT −N · dµ (54)

so the particle density can be calculated:

n = −∂φ
∂µ

= kBT

∞∫
−∞

D(E)
1

1− exp
(
µ−E
kBT

) exp

(
µ− E
kBT

)
· 1

kBT
dE =

∞∫
−∞

D(E)
1

exp
(
E−µ
kBT

)
− 1︸ ︷︷ ︸

FBE(E)

dE

(55)
In this expression we recognize the Bose Einstein function: FBE . All of this calculation is based

on the assumption of non interacting bosons. If there were any interaction the Bose Einstein
function would not describe this accurately. Photons do not interact very much, so the Bose Ein-
stein function is a valid assumption.

From the grand canonical potential many other thermodynamic properties can be derived:

u = f + Ts =

∞∫
−∞

ED(E)FBEdE (56)

cv =
∂u

∂T
(57)

s = − ∂φ
∂T

(58)

For photons the chemical potential is zero. This is derived from the fact that the number of
photons is not conserved. (As long as energy and momentum are conserved, photons can be absorbed
and emitted)

∂F

∂N

∣∣∣∣
T,V

= 0 = µ. (59)

14. Juli 2017 10



3.2 Density of states

(a) (b)

Abbildung 4: Density of states for photons in vacuum

We start out with the density of states for photons in vacuum. You look at the EM-field in a cubic
box of length L and apply periodic boundary conditions. An integer number of wavelengths must
fit in the cube, λ = L/n, where n is an integer. This restricts the allowed wavevectors to kx, ky,
kz = 2π

L . These allowed values of k form a cubic lattice in k space. The k space volume associated
with each point is (2π/L)3. There are p = 2 as many linearly independent normal modes as there are
points in k-space because the electric field has two independent components that are perpendicular
to the propagation direction.
The waves which have the same energy, have all the same frequency and absolute value of k. We
look for the density of states in k-space. So we have to count the allowed points with k values
between k and k + dk in a shell:

D(k)dk = p
4πk2dk

(2π/L)3
=
k2L3

π2
dk (60)

Using the relationship ω = c|k|, the density of modes per unit volume in terms of frequency is,

D(ω)dω =
ω2

c3π2
dω (61)

Abbildung 5: Dispersionrelation and Density of states for free photons in vacuum [1]
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Using the relationship E = ~ω, the density of modes per unit volume in terms of Energy is

D(E) =
E2

π2c3~3
(62)

3.3 Thermodynamic properties of light
With the density of states and the thermodynamic coherences the energy spectral density(=plank
radiation curves) can be calculated. As a convention this is done in terms of wavelength for the 3D
case:

u(λ) = E(λ)D(λ)FBE(λ) =
8πhc

λ5(exp hc
λkBT

− 1)
(63)

The maximum of the plank radiation curves depends on the temperature. This is known as the
Wiens displacement law: λmax = const.

T
The internal energy is the integral over the energy spectral density. From the internal energy
many thermodynamic properties can be derived.

u =

∞∫
0

u(λ)dλ =
4σT 4

c
(64)

3.4 Photonic crystals
In this section we look at light moving through a periodic structure. A photonic crystal is a struc-
ture with different dielectric functions in different (repeating) regions. To produce such a crystal,
polystyrene spheres can be settled to an fcc structure in water. The empty parts in between them
can be filled with Titaniumdioxid and the polystyrene spheres can be burned out. The structure
you get is called an inverse opal. Light moves through the empty wholes with cvac and through the
TiO2 it propagates slower. Long wavelength light will move through with some average (of the two
materials) speed of light. However, when the wavelength of the light approaches the periodicity of
the crystal, it gets diffracted. The diffraction condition is ∆k = G.

Reminder: Reciprocal lattice vectors:

~b1 =
2π ~a2 x ~a3
~a1 ( ~a2 x ~a3)

(65)

~G = h~b1 + k~b2 + l ~b3 (66)

Any periodic function can be represented as a Fourier series:

f(~r) =
∑
G

f~Ge
i ~G~r (67)

1D: The simplest example for a photonic crystal would be in one dimension. When light strikes
the interface between two materials with different indices of refraction, part of the light is trans-
mitted and part is reflected. In layered materials, there are reflections from each layer. Most of
the time, the reflections from the different layers add incoherently, but under certain conditions
the reflections add constructively. When this happens, the layered material acts like a mirror for a
particular range of frequencies. It completely reflects certain frequencies while letting others pass
through. The lowest k value with diffrection in this example corresponds to 1 sin-wave per period
a in Abb. 6. k = 2π

λ , the second: 2 sin-waves per period a: k = 4π
λ and so on.
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Abbildung 6: Speed of light in a layered material in 1D [1]

2D: For 2 Dimensions the diffraction condition (~k − ~k′ = ~G) is shown in Im. 7a. Most of the
scattering is elastic, so |k| = |k′|. For every couple of k & k’ vectors which satisfy these conditions
we expect diffraction to occur.

(a) Diffractoin in reciprocal space [1] (b) Brillouinzone in 2D

Abbildung 7

In Im. 7b the brillouinzone construction is showen. At the Brillouinzonebounderies we expect
diffraction to occur.
The first brillouinzone is very important for further calculations, because due to the bloch theorem,
any k vector can be shifted back into the first brillouin zone.

3.4.1 Bloch theorem

Start out with an arbitrary function which satisfies periodic boundary conditions:

f(~r) =
∑
~k

c~ke
i~k~r (68)

Now we can reorder the sum into k inside the first Brillouinzone and shift any k outside the first
Brillouinzone back into with the periodicity of the crystal.

f(~r) =
∑

~k∈1Bz

∑
~G

c~k+~Ge
i(~k+~G)~r (69)

Look at just one particular k: We can pull out the factor of ek and recognize that the remaining
term is just a periodic function.

fk(~r) = ei
~k~r
∑
~G

c~k+~Ge
i ~G~r = ei

~k~ruk(~r) (70)
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This result is called Bloch form and is important because it is an eigenvector of the Translation
operator. If we can find the Bloch form of a system, it represents the normal mode solution. And
the bloch theorem states that any normal mode solution of the crystal can be shifted back into the
first brillouin zone.

3.4.2 Empty lattice approximation

A good first guess how the bandstructure of a photonic crystal will look like is given by the empty
lattice approximation. You let the light move through a periodic structure, but the speed of light
is everywhere the same = cvac. We already discussed light in vacuum in Im. 5. The difference of
the empty lattice approximation to the case of photons in vacuum is, that there are brillouinzones.
Due to the Bloch theorem we can shift all bands back into the first brillouinzone and reflect them
at the boundaries. This assumption can be seen in Im. 8.

Abbildung 8: Empty lattice approximation for photonic crystal [1]

If there were different speed of lights, the bands would band over, hit the brillouinzone at 90 ◦
and little gaps would appear.

3.4.3 Plane wave methode

We start out with a crystal where the speed of light is a periodic function of position (like in the
case of photonic crystals).

c(~r)2∇2A =
∂2A

∂t2
(71)

The speed of light is can be written as a fourier series in terms of the periodicity of the crystal.

c(~r) =
∑
~G

b~Ge
i ~G~r (72)

The vector potential can be written as a fourier series (plane waves). We assume a box which is
bigger than the periodicity of the crystal. Therefor there are much more allowed k values than G
values.

Aj =
∑
~k

A~ke
i(~k~r−ωt) (73)
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Put c and A in the differential equation:∑
~G

b~Ge
i ~G~r
∑
~κ

(−κ2)A~κe
i(~κ~r−ωt) = −ω2

∑
~k

A~ke
i(~k~r−ωt) (74)

∑
~κ

∑
~G

(−κ2)b~GA~κe
i(~G~r−~κ~r−ωt) = −ω2

∑
~k

A~ke
i(~k~r−ωt) (75)

The right hand side can only be equivalent to the left hand side if the two exponential terms
are equal:

~G+ ~κ = ~k → ~G = ~k − ~κ (76)

And the result are algebraic equations called central equations:∑
~G

(~k − ~G)2b~GA~k−vecG = ω2A~k (77)

The b values are known as they define the periodicity of the speed of light in different regions.
The G are the reciprocal lattice vectors of the crystal. You choose a k in the first brillouinzone and
calculate the frequency ω and the amplitudes A. Move to the next k and repeat ec.
To check the result of the plane wave methode you can set the speed of light everywhere the same.
You expect the result of the empty lattice approximation.
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