What are: plasmons, polarons, bipolarons, exci-

tons, magnons?

Quasiparticles!

plasmons: coupled electromagnetic charge wave

surface plasmons: plasmons at interfaces; lower energy than bulk plasmons

polarons: electron plus ionic polarization field; in materials with low

electron density; there are large (Fröhlich) and small polarons (Holstein):

large polarons have a very high effective mass and can be found in ionic

insulators; small polarons have a small size \sim lattice constant and occur in

organic semiconductors or insulators.

bipolarons: are a bound pair of polarons which has an integer spin and

becomes a boson

excitons: bound pair of an electron and a hole found in insulators and

semiconductors

Frenkel excitons: high binding energy, strongly localized

Mott Wanier excitons: lower binding energy, rather big distance between e⁻

and h⁺

magnons: excitations of ordered magnetic states; bosons

Are they collective modes? Explain your reason-

ing.

plasmons: collective mode \leftarrow coupled charge wave

polarons and bipolarons: particle- like quasiparticle \leftarrow electron + field

1

excitons:

Mott Wannier: particle like

Frenkel: collective mode \leftarrow particles can form bands

magnons: collective mode \leftarrow excitation of amgnetic spin wave

 $see\ also\ http://lamp.tu\text{-}graz.ac.at/\ hadley/ss2/quasiparticles/quasiparticles.php$

How could you observe these quasiparticles experimentally?

An experimental technique to meassure quasiparticles is Raman Spectroscopy: The specimen is exposed to laserlight from which a small part scatters inelastically. The laserlight photons can give off energy to produce a quasiparticle or take the energy from an already existing. In the Raman spectra these processes can be realted to the Stokes (creation of quasiparticle) and the Anti-Stoke peaks.

aditionally:

plasmons: Electron Energy Loss Spectroscopy (EELS/ HREELS) (equidistant peaks in spectrum → peak distance= plasmonenergy)

magnons: Neutron scattering- inelastic scattered neutrons create or annihilate magnons

2