
Institute of Solid State Physics
Technische Universität Graz

Superconductivity



Institute of Solid State Physics
Technische Universität Graz

Superconductivity

Primary characteristic: zero resistance at dc

There is a critical temperature Tc above which superconductivity 
disappears

About 1/3 of all metals are superconductors

Metals are usually superconductors OR magnetic, not both

Good conductors are bad superconductors

Kittel chapter 10



Superconductivity

No measurable decay in current after 2.5 years. r < 10-25 Wm. 

Antiaromatic molecules are unstable and highly reactive 
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Heike Kammerling-Onnes

Superconductivity was 
discovered in 1911

Nobel Lecture 1913
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Critical temperature



Meissner effect

Superconductors are perfect diamagnets at low fields. 
B = 0 inside a bulk superconductor.

Superconductors are used for magnetic shielding.

T >Tc T <Tc



Superconductivity

Critical temperature Tc

Critical current density Jc

Critical field Hc

2 2 21
0 2 22B c c c

m
n nk T H nmv J

ne
    



YBa2Cu3Ox



h
ttp

://
w

w
w

.w
m

i.b
a

d
w

.d
e

/t
ea

ch
in

g
/L

e
ct

ur
en

o
te

s/
in

de
x.

h
tm

l



(Sn5In)Ba4Ca2Cu10Oy Tc = 212 K 



Superconductivity

Perfect diamagnetism

Jump in the specific heat like a 2nd order phase transition, not a 
structural transition

Superconductors are good electrical conductors but poor thermal 
conductors,  electrons no longer conduct heat

There is a dramatic decrease of acoustic attenuation at the phase 
transition, no electron-phonon scattering

Dissipationless currents - quantum effect

Electrons condense into a single quantum state - low entropy.

Electron decrease their energy by  but loose their entropy.



Probability current
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Schrödinger equation for a charged particle in an electric and magnetic field is

write out the                                  term 2( )i qA   
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write the wave function in polar form



Probability current
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Schrödinger equation becomes:

Real part:
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Imaginary part:
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Probability current

Imaginary part:
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Multiply by || and rearrange
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This is a continuity equation for probability
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The probability current: 



Probability current / supercurrent
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The probability current: 

All superconducting electrons are in the same state so  
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In superconductivity the particles are Cooper pairs q = -2e, m = 2me, ||2 = ncp.  

London gauge   0 
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ns = 2ncp

This result holds for all charged particles in a magnetic field. 



1st London equation

First London equation: 
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Classical derivation:
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Heinz & Fritz



2nd London equation

Second London equation: 
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Meissner effect

London penetration depth: 
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Combine second London equation with Ampere's law
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Helmholtz equation: 



Meissner effect
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superconductor
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Al  = 50 nm
In  = 65 nm
Sn  = 50 nm
Pb  = 40 nm
Nb  = 85 nm
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solution to Helmholtz equation:
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