

Technische Universität Graz

Institute of Solid State Physics

Applications of dielectric materials

Dielectrics

Dielectrics used as electrical insulators should not conduct.

Large breakdown field.

Low AC losses.

Sometimes a low dielectric constant is desired (CMOS interconnects)

Sometimes a high dielectric constant is desired (supercapacitors).

Electrode separation in meters $\times \ 10^{-2}$

AC losses - loss tangent

In an ideal capacitor, current leads voltage by 90°.

Because the dielectric constant is complex, in real materials current leads voltage by 90° - δ .

Power loss =
$$\frac{\omega \varepsilon_1 V_0^2}{2} \tan \delta$$

Becomes more of an issue at high frequencies (microwaves)

Loss tangent

Substance	Dielectric Constant (relative to air)	Dielectric Strength (V/mil)	Loss Tangent	Max Temp (°F)
ABS (plastic), Molded	2.0 - 3.5	400 - 1350	0.00500 - 0.0190	171 - 228
Air	1.00054	30 - 70		
Alumina - 96% - 99.5%	10.0 9.6		0.0002 @ 1 GHz 0.0002 @ 100 MHz 0.0003 @ 10 GHz	
Aluminum Silicate	5.3 - 5.5			
Bakelite	3.7			
Bakelite (mica filled)	4.7	325 - 375		
Balsa Wood	1.37 @ 1 MHz 1.22 @ 3 GHz		0.012 @ 1 MHz 0.100 @ 3 GHz	
Beeswax (yellow)	2.53 @ 1 MHz 2.39 @ 3 GHz		0.0092 @ 1 MHz 0.0075 @ 3 GHz	
Beryllium oxide	6.7		0.006 @ 10 GHz	
Butyl Rubber	2.35 @ 1 MHz 2.35 @ 3 GHz		0.001 @ 1 MHz 0.0009 @ 3 GHz	
Carbon Tetrachloride	2.17 @ 1 MHz 2.17 @ 3 GHz		<0.0004 @ 1 MHz 0.0004 @ 3 GHz	
Diamond	5.5 - 10			
Delrin (acetyl resin)	3.7	500		180
Douglas Fir	1.9 @ 1 MHz		0.023 @ 1 MHz	
Douglas Fir Plywood	1.93 @ 1 MHz 1.82 @ 3 GHz		0.026 @ 1 MHz 0.027 @ 3 GHz	
Enamel	5.1	450		
Epoxy glass PCB	5.2	700		
Ethyl Alcohol (absolute)	24.5 @ 1 MHz 6.5 @ 3 GHz		0.09 @ 1 MHz 0.25 @ 3 GHz	
Ethylene Glycol	41 @ 1 MHz 12 @ 3 GHz		-0.03 @ 1 MHz 1 @ 3 GHz	
Formica XX	4.00			
FR-4 (G-10) - low resin	4.9		0.008 @ 100 MHz	
- high resin	4.2		0.008 @ 3 GHz	
Fused quartz	3.8		0.0002 @ 100 MHz 0.00006 @ 3 GHz	
Fused silica (glass)	3.8			
Gallium Arsenide (GaAs)	13.1		0.0016 @ 10 GHz	
Germanium	16			
Glass	4 - 10			
Glass (Corning 7059)	5.75		0.0036 @ 10 GHz	
Gutta-percha	2.6	2	2	
Halowax oil	4.8	<u>.</u>		
High Density Polyethylene (HDPE), Molded	1.0 - 5.0	475 - 3810	0.0000400 - 0.00100	158 - 248
Ice (pure distilled water)	4.15 @ 1 MHz 3.2 @ 3 GHz		0.12 @ 1 MHz 0.0009 @ 3 GHz	
Kapton® Type 100 Type 150	3.9 2.9	7400 4400		500