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Numerical Methods

i Fourier analysis of real data sets
Introduction
Linear
Equations Consider a series of N measurements x,, that are made at equally spaced time intervals At. The total time to make the measurement series is NAt. A discrete
Interpolation Fourier transform can be used to find a periodic function z(t) with a fundamental period N'At that passes through all of the points. This function can be expressed as
Numerical a Fourier series in terms of sines and cosines,
Solutions
Computer
Measurement 2(t) = R{Zmlz B COS( 2mnt ) e Siﬂ( 2mnt )]
B i = s of s bt |
= NAt NA¢

Data for z;, can be input in the textbox below. When the 'Calculate Fourier Coefficients' button is pressed, the periodic function z(t) is plotted through the data
points. The Fourier coefficients are tabulated and plotted as well. The fft algorithm first checks if the number of data points is a power-of-two. If so, it calculates the
discrete Fourier transform using a Cooley-Tukey decimation-in-time radix-2 algorithm. If the number of data points is not a power-of-two, it uses Bluestein's chirp
z-transform algorithm. The fft code was taken from Project Nayuki.
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http://lampx.tugraz.at/~hadley/num/ch3/3.3a.php



Notations for Fourier Transforms

P g (E): L [ f(7)e " dF .

(2?1') I

—

F(F) = [ Foa1 (k)e™ dk.

f(r) 1s built of plane waves



exp(—|alz)

A
w{u3+k2} E+ER
sgn(x) _ )
spn(zr) = —1forr < 0 and = =
sgn(z) =1forz >0
—ike —i2k
sgn () exp(—|alz) (a2 +#) R
|a|—ik || —ik
H(z) exp(—|alz) @P) e
M(z) = H(m + -;.,) H(% _ :.:') sin(k/2) 2 sin(k/2)
Square pulse: height= 1, width= 1, xk k
centered at x = 0.
H(I—ﬂIn
Square pulse: height = 1, width = a, m{::m} exp(—ik&: ) ﬂ exp( —ikz }
centered at og.
e 5(k-h) (2r) 5 (R~ o)
Plane wave
1 (k) 2md (k)
&(x) E—IT 1
F—7y d b T =
‘5( a ) (ﬂ—fr) exp(—tk- u) a‘iexp(—zk - fru)
F—rol® - d = SR d a®
() () el =) (72 e S e )
H(R—|r —7q|) 2_ J,(|k|R) exp(—ik-T 2R 7, (|k|R ik-7
Disc of radius R centered at rp, ¥ € R? 2] 1[5 expl - o) || it e 0)
H(R—[f—Fo) L ) L )
Sphere ﬂff&d;usERRgﬂﬂt‘fod atry. [?Tr]13|i:.|3 (sin( |k|R) — |k|Rcﬂs{]k[R]) exp(—ik-rg) I:T (5111(|F.,| R) — |k1RCDE{|k|R}) exp(—ik -1

Here H{(z) is the Heaviside step function, §(z) is the Dirac delta function, Ji () is the first order Bessel function of the first kind. and d is the number of dimensior
Calculate a Fourier transform numerically.

http://lamp.tu-graz.ac.at/~hadley/ss1/crystaldiffraction/ft/ft.php



Properties of Fourier transforms

Linearity and superposition

F{af(r) + Bg(7)} = aF{f(¥)} + BF{g(7)} where @ and 3

are any constants.
Similarity
F{F(Z)} = lal*FLF(P)}-

Shift

F{f(r —70)} = F{f(7 )}exp( iz-?g).



Convolution (Faltung)

fF)*g(F) = | f(7F)gF ~F)dr

Notation [-1.-1]:  F{fg} = F{f} x Flg}. F YFG}=+F F}xF G}

Notation [1,-1]: f{fg}:%}_{f}*}_{g}, F HEG, =F Y Fyx F G}

Notation [0.-1]: F{fg}:%}—{f}*f{g} F YHFGY = —=F YF}«F Y&y

\.f"ﬁl'

Notation [0,-27].  F{fg} = F{f}* F{g}, F "{FG}Y=F YF}xF G}



Impulse response function (Green's functions)

A Green's function 1s the solution to a linear differential
equation for a o-function driving force

For instance, d g ,dg
d t dt

=S kg =6(1)

has the solution

g(t)= Lexp (_—btj sinL\/4mk b tj t>0

m 2m 2m




Green's functions

A driving force f'can be thought of a being built up of many delta
functions after each other.

f@y=[s(-t)f(¢)ar
By superposition, the response to this driving function is superposition,
u(t)= [ gt =1/ (&)’

. d’u du
For instance, m +b—+ku= f(t
dt’ dt S

has the solution

u(t) = T%exp[_b gt_t’)]sin[\/“mk_bz (t—t')J F(t"dt'

m 2m

Green's function converts a differential equation into an integral equation



Generalized susceptibility

A driving function f causes a response u

If the driving force is sinusoidal,

f@)= Foeiwt

The response will also be sinusoidal.

u(t) = j g(t—t") F(¢)dt = j g(t—1")F,e dt’

The generalized susceptibility at frequency  1s

y J‘g(t_tr)eia)t'dt!
f o eia)t

x(w) =



Generalized susceptibility

| Plot |

1E.
8 o
m._ -
[Pl
—l .Il.
|
i
i
iz
v =
&, | = -
a—
I
_m_b
= I i
S| @ n
|
=]
e
& A
: =

2
10
g
6
4
0

http://lampx.tugraz.at/~hadley/physikm/apps/resonance.en.php
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Generalized susceptibility

y J‘g(t . ZLI)eia)t'dld
Z(C()) -~ iot
f e

Since the integral is over ¢', the factor with ¢ can be put in the integral.
(@)= [g(t=)e ™ dr
Change variables to 7 =1¢-t', dr = -dt' reverse the limits of integration

2(0) = [ g()e " dr

The susceptibility is the Fourier transform of the Green's function.

g(0) =5 [ r@)edo

Fl,—l



First order differential equation

] 2(@) = [ g(t)e ™ dt
m2E 4 he = 5(1)
dt b

g(f):iH(t)exp(—ﬁj L 2(®) =
m m
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The Fourier transform of a decaying exponential 1s a Lorentzian



Susceptibility

du
m—-+bu = F(t)
dt
Assume that u and F’ are sinusoidal u=Ae F = F,e™
iomA+bA = F, N \
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The sign of the imaginary part depends on whether you use e/ or e,



Susceptibility

dg
S L bho =5(t
mdt g=0(t)

Fourier transform the differential equation

iomy(w)+by(w)=1
1
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Damped mass-spring system
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More complex linear systems

Any coupled system of linear differential equations can be
written as a set of first order equations

By
dt

The solutions have the form X’ieﬂ"’t

where X are the eigenvectors and A; are the eigenvalues of
matrix M.

Re(A,) <0 for stable systems

A 1s either real and negative (overdamped) or comes in complex
conjugate pairs with a negative real part (underdamped).



amplitude

More complex linear systems

Low frequency "1/f noise"

resonances

frequency



Odd and even components

Any function f(¢¥) can be written in terms of its odd and even components

E() = 7| + f(-1)]
O =7f(9) - (-1)]
() =E@®) + O)

S =70 + -0] + ([ - A-1)]

T (e 'dt = T (E(t)+O(t))(cos wt —isin wt ) dt

—00

= j E(t)cos wtdt —ij O(t)sin wtdt

The Fourier transform of E(¢) is real and even
The Fourier transform of O(¢) 1s imaginary and odd
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Causality and the Kramers-Kronig relations (I)

z(@)=[g(r)e ™ dr = [ E(r)cos(wr)dr —i[ O(z)sin(wr)dr = 1/ (@) +iy" (o)
The real and imaginary parts of the susceptibility are related.

If you know 7', inverse Fourier transform to find £(¢). Knowing E(¢) you
can determine O(7) = sgn(¢)E(¢). Fourier transform O(¢) to find ".

oo

X (w) = /E(t)cos(wt]dt E(t) = — fx'(w} cos(wt)dw

— 00

O(t) = sgn(t)E(t)  E(t) = sgn(t)O(t)

'@ =~ [O@sinwide  0() = 5= [ x'(w)sin(wt)de

— Do



Kramers-Kronig relations
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If you know any of these for just positive frequencies,
you can calculate all the others.

https://en.wikipedia.org/wiki/Kramers%E2%80%93Kronig_relations
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Causality and the Kramers-Kronig relation (II)

Real space Reciprocal space
: L 1 2'(@),
w)=——P|*—Adw
E(1) = sgn(H)0(1) r@)=- P
O(t) = sgn()E(7) @)=L p [ L)y,
r S o-o

/ -, . " . —i % ! I:jj
Q y=—*iy", iy =—%y

T Tw
Take the Fourier transform, use the convolution theorem.

P: Cauchy principle value (go around the singularity and
take the limit as you pass by arbitrarily close)

Singularity makes a numerical evaluation more difficult.

http://lamp.tu-graz.ac.at/~hadley/ss2/linearresponse/causality.php



Kramers-Kronig relations (III)

1" (o) = LPJ‘ Mda)'
T C a — @
(a))__LPJ' x'(@") I
Y/ o' —w
2 Y 7(@) = 7'(-o)
S e
z(a))———PI ——Pf

f
change variables ®'—-®'

(4 minus signs)

Kramers-Kronig relations II

Real part is even
Imaginary part is odd



Kramers-Kronig relations (III)
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Singularity 1s stronger 1n this form.
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Impulse response/generalized susceptibility

The impulse response function is the response of the system to a
O-function excitation. The response function must be zero before
the excitation.

The generalized susceptibility 1s the Fourier transform of the
impulse response function.

Any function that is zero before the excitation and nonzero
afterwards must have both an odd component and an even
component.

The generalized susceptibility must have a real and 1imaginary
part. All information about the real part is contained in the
imaginary part and vice versa.



Fluctuation-dissipation theorem

The fluctuation-dissipation theorem relates the size of the
fluctuations to the dissipation in a system.

Most of the dissipation in a resonant system occurs at
frequencies near the resonance.

http://en.wikipedia.org/wiki/Fluctuation dissipation theorem



Fluctuation-dissipation theorem

Brownian motion: The response to thermal noise is related to the
viscosity.
dv

n—=
dt

Johnson noise: The voltage fluctuations are related to the resistance.

— v D = uk,T

V. . =4k, TRB

The fluctuation-dissipation theorem holds at equilibrium (where the
equations are linear to a good approximation).

http://en.wikipedia.org/wiki/Fluctuation dissipation_theorem



