

Technische Universität Graz

Institute of Solid State Physics

Intrinsic Semiconductors

Density of electrons in the conduction band

Properties	Si	Ge	GaAs
Bandgap $E_{m{g}}$	1.12 eV	0.66 eV	1.424 eV
Effective density of states in conduction band (300 K) N_c	$2.78 \times 10^{25} \text{ m}^{-3}$	$1.04 \times 10^{25} \text{ m}^{-3}$	$4.45 \times 10^{23} \text{ m}^{-3}$

Density of electrons in the conduction band Density of holes in the valence band

$$n = N_c \left(\frac{T}{300}\right)^{3/2} \exp\left(\frac{\mu - E_c}{k_B T}\right)$$

$$p = N_{\nu} \left(\frac{T}{300}\right)^{3/2} \exp\left(\frac{E_{\nu} - \mu}{k_{B}T}\right)$$

Properties	Si	Ge	GaAs
Bandgap $E_{\!m g}$	1.12 eV	0.66 eV	1.424 eV
Effective density of states in conduction band (300 K) N_c	$2.78 \times 10^{25} \text{ m}^{-3}$	$1.04 \times 10^{25} \text{ m}^{-3}$	$4.45 \times 10^{23} \text{ m}^{-3}$
Effective density of states in valence band (300 K) $N_{ u}$	$9.84 \times 10^{24} \mathrm{m}^{-3}$	$6.0 \times 10^{24} \mathrm{m}^{-3}$	$7.72 \times 10^{24} \mathrm{m}^{-3}$
Effective mass electrons m [*] /mo	$m_l^* = 0.98$ $m_f^* = 0.19$	$m_l^* = 1.64$ $m_t^* = 0.082$	m [*] =0.067
Effective mass holes	$m_{lh}^{*} = 0.16$	$m_{lh}^{*} = 0.044$	$m_{lh}^{*} = 0.082$
<i>m[*]/m</i> 0	$m_{hh}^{*} = 0.49$	$m_{hh}^{*} = 0.28$	$m_{hh}^{*} = 0.45$
Crystal structure	diamond	diamond	zincblende
Density	2.328 g/cm³	5.3267 g/cm ³	5.32 g/cm³
Atoms/m ³	5.0 × 10 ²⁸	4.42×10^{28}	4.42×10^{28}

The electrical contribution to the thermodynamic properties of insulators depend on band edges

Boltzmann approximation

The table below gives the contribution of electrons in intrinsic semiconductors and insulators to some thermodynamic quantities. These results where calculated in the Boltzmann approximation where it is assumed that the chemical potential lies in the band gap more than $3k_BT$ from the band edge. The electronic contribution to the thermodynamic quantities are usually much smaller than the contribution of the phonons and thus the electronic components are often simply ignored.

	1-d	2-d	
Density of states m_e^* and m_h^* are 'density of states' effective masses	$\frac{1}{\hbar\pi} \sqrt{\frac{2m_h^*}{(E_v - E)}} E < E_v$ $D(E) = 0 E_v < E < E_c \mathbf{J}^{-1} \mathbf{m}^{-1}$ $\frac{1}{\hbar\pi} \sqrt{\frac{2m_e^*}{(E - E_c)}} E > E_c$	$\frac{m_h^*}{\hbar^2 \pi} H(E_v - E) E < E_v$ $D(E) = 0 E_v < E < E_c \mathbf{J}^{-1} \mathbf{m}^{-2}$ $\frac{m_e^*}{\hbar^2 \pi} H(E - E_c) E > E_c$ $H(x) = 0 \text{for } x < 0 \text{ and } H(x) = 1 \text{for } x > 0$	
Density of states N_{ν} and N_c are the effective densities of states	$N_{\nu}(300)\sqrt{\frac{2}{300\pi k_{B}(E_{\nu}-E)}} E < E_{\nu}$ $D(E) = 0 E_{\nu} < E < E_{c} \mathbf{J}^{-1} \mathbf{m}^{-1}$ $N_{c}(300)\sqrt{\frac{2}{300\pi k_{B}(E-E_{c})}} E > E_{c}$	$\frac{N_{\nu}(300)}{300k_{B}}H(E_{\nu}-E) E < E_{\nu}$ $D(E) = 0 E_{\nu} < E < E_{c} J^{-1} \text{ m}^{-2}$ $\frac{N_{c}(300)}{300k_{B}}H(E-E_{c}) E > E_{c}$	
Density of electrons in the conduction band ∞	$n = \sqrt{\frac{m_e^* k_B T}{\hbar^2 \pi}} \exp\left(\frac{\mu - E_c}{k_B T}\right) \mathbf{m}^{-1}$	$n = \frac{m_e^* k_B T}{\hbar^2 \pi} \exp\left(\frac{\mu - E_c}{k_B T}\right) \mathbf{m}^{-2}$	
$n = \int_{E_{\epsilon}} D(E) f(E) dE$	$= N_c \exp\left(\frac{\mu - E_c}{k_B T}\right)$	$= N_c \exp\left(\frac{\mu - E_c}{k_B T}\right)$	
Density of holes in the valence band	$p = \sqrt{\frac{m_h^* k_B T}{\hbar^2 \pi}} \exp\left(\frac{E_v - \mu}{k_B T}\right) \mathbf{m}^{-1}$	$p = \frac{m_h^* k_B T}{\hbar^2 \pi} \exp\left(\frac{E_v - \mu}{k_B T}\right) \mathbf{m}^{-2}$	
$p = \int_{-\infty}^{\infty} D(E) (1 - f(E)) dE$	$= N_{\nu} \exp\left(\frac{\mu - E_{c}}{k_{-}T}\right)$	$= N_{\nu} \exp\left(\frac{\mu - E_{c}}{k_{-}T}\right)$	

Intrinsic semiconductors

In the Boltzmann approximation, the density of states of a semiconductor is,

$$D(E) = egin{cases} rac{(2m_h^*)^{3/2}}{2\pi^2 \hbar^3} \sqrt{E_v - E}, & ext{if} \ E < E_v \ 0, & ext{if} \ E_v < E < E_c \ rac{(2m_e^*)^{3/2}}{2\pi^2 \hbar^3} \sqrt{E - E_c}, & ext{if} \ E_c < E \end{cases}$$

Here m_e^* and m_h^* are the 'density of states effective masses' for electrons and holes. Usually in the literature, effective density of states at 300 K is given instead of the 'density of states effective masses'. The relationship between the two is,

$$egin{aligned} m_h^* &= rac{\pi \hbar^2}{300 k_B} \left(\sqrt{2} N_v(300)
ight)^{2/3} \ m_e^* &= rac{\pi \hbar^2}{300 k_B} \left(\sqrt{2} N_c(300)
ight)^{2/3} \end{aligned}$$

In an intrinsic semiconductor, the density of electrons equals the density of holes, $n = p = n_i = \sqrt{N_c \left(rac{T}{300}
ight)^{3/2} N_v \left(rac{T}{300}
ight)^{3/2}} \exp\left(rac{-E_g}{2k_BT}
ight)$.

By setting the concentration of electrons equal to the concentration of holes, it is possible to solve for the chemical potential. The bandgap of most semiconductors is temperature dependent. The form below lets you input the temperature dependance of the bandgap. The bandgaps for some semiconductors can be loaded into the form with the buttons on the right.

$$n = N_c(300) \left(rac{T}{300}
ight)^{3/2} \exp\left(rac{\mu - E_c}{k_B T}
ight) = p = N_v(300) \left(rac{T}{300}
ight)^{3/2} \exp\left(rac{E_v - \mu}{k_B T}
ight).$$
 $\mu = rac{E_v + E_c}{2} + k_B T \ln\left(rac{N_v(300)}{N_c(300)}
ight).$

http://lamp.tu-graz.ac.at/~hadley/ss1/semiconductors/intrinsic.php

Narrow bandgap semiconductors

Use the programs for metals for small bandgap semiconductors.

d 🥹 Getting Started 🔊 Latest Headlines 🗌 English to German

	Semiconductors on NSM		1
	Semiconductors n, k database	InGaAsP	Equivalents
Si	- Silicon	Ge	- Germanium
GaP	- Gallium Phosphide	GaAs	- Gallium Arsenide
InAs	- Indium Arsenide	С	- Diamond
GaSb	- Gallium Antimonide	InSb	- Indium Antimonide
InP	- Indium Phosphide	GaAs _{1-x} Sb _x	- Gallium Arsenide Antimonide
Al _x Ga _{1-x} As	- Aluminium Gallium Arsenide		
AlN	- Aluminium Nitride	InN	- Indium Nitride
BN	- Boron Nitride	GaN	- Gallium Nitride

We are going to add new data for:

Ga _x In _{1-x} As _y Sb _{1-y}	- Gallium Indium Arsenide Antimonide	Ga _x In _{1-x} P	- Gallium Indium Phosphide
Ga _x In _{1-x} As	- Gallium Indium Arsenide	Ga _x In _{1-x} Sb	- Gallium Indium Antimonide
InAs _{1-x} Sb _x	- Indium Arsenide Antimonide	Ga _x In _{1-x} As _y P _{1-y}	- Gallium Indium Arsenide Phosphide
Si _{1-x} Ge _x	- Silicon Germanium	SiC	- Silicon Carbide

🟫 🔻 😋 🚼 🔹 vasor

Effective Masses

Electrons:

Halaar

The surfaces of equal energy are ellipsoids.

 $m = 0.98 m_0$

 $m_t = 0.19 m_o$

Effective mass of density of states $m_c = 0.36m_o$ There are 6 equivalent valleys in the conduction band.

 $m_{cc}=0.26m_{o}$

noies.	
Heavy	$m_h = 0.49 m_0$
Light	$m_{lp} = 0.16m_0$
Split-off band	$m_{so} = 0.24 m_0$
Effective mass of density of states	$m_V = 0.81 m_O$

Large gap -> large effective mass

Cyclotron resonance
$$\omega_c = \frac{eB}{m^*}$$

Resonant absorption occurs when rf waves with the cyclotron resonance frequency are applied. This can be used to experimentally determine the effective mass.

Knowing the effective mass, the scattering time can be calculated from the measured conductivity.

$$\sigma = \frac{ne^2\tau_{sc}}{m^*}$$

Direct and indirect band gaps

Momentum must be conserved when photons are absorbed or emitted.

Material	Wavelength (nm)
InAsSbP/InAs	4200
InAs	3800
GaInAsP/GaSb	2000
GaSb	1800
$Ga_x In_{1-x} As_{1-y} P_y$	1100-1600
Ga _{0.47} In _{0.53} As	1550
$Ga_{0.27}In_{0.73}As_{0.63}P_{0.37}$	1300
GaAs:Er,InP:Er	1540
Si:C	1300
GaAs:Yb,InP:Yb	1000
Al _r Ga _{1-r} As:Si	650-940
GaAs:Si	940
Al _{0.11} Ga _{0.89} As:Si	830
Al _{0.4} Ga _{0.6} As:Si	650
GaAs _{0.6} P _{0.4}	660
$GaAs_{0.4}P_{0.6}$	620
$GaAs_{0.15}P_{0.85}$	590
$(Al_rGa_{1-r})_{0.5}In_{0.5}P$	655
GaP	690
GaP:N	550-570
Ga _r In _{1-r} N	340,430,590
SiC	400-460
BN	260,310,490

TABLE 1Common III-V materials used to produceLEDs and their emission wavelengths.

Light emitting diodes

