

Technische Universität Graz

Institute of Solid State Physics

Ferrimagnetism, Antiferromagnetism

Ferrimagnets

Magnetite Fe_3O_4 (Magneteisen) Ferrites MO·Fe₂O₃

M = Fe, Zn, Cd, Ni, Cu, Co, Mg

 $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$

Two sublattices A and B.

Spinel crystal structure XY₂O₄

8 tetrahedral sites A (surrounded by 4 O) $5\mu_B$ \uparrow

16 octahedral sites B (surrounded by 6 O) $9\mu_B \downarrow$

per unit cell

MgAl₂O₄

Ferrimagnets

Magnetite Fe₃O₄

Ferrites MO[·]Fe₂O₃

M = Fe, Zn, Cd, Ni, Cu, Co, Mg

Exchange integrals J_{AA} , J_{AB} , and J_{BB} are all negative (antiparallel preferred)

 $|J_{AB}| > |J_{AA}|, |J_{BB}|$

Table 33.3 SELECTED FERRIMAGNETS, WITH CRITICAL TEMPERATURES T_c AND SATURATION MAGNETIZATION M₀

MATERIAL	$T_{c}\left(\mathrm{K}\right)$	M_0 (gauss) ^a
Fe ₃ O ₄ (magnetite)	858	510
CoFe ₂ O ₄	793	475
NiFe ₂ O ₄	858	300
CuFe ₂ O ₄	728	160
MnFe ₂ O ₄	573	560
$Y_3Fe_5O_{12}$ (YIG)	560	195

^{*a*} At T = 0(K).

Source: F. Keffer, Handbuch der Physik, vol. 18, pt. 2, Springer, New York, 1966.

Kittel

D. Gignoux, magnetic properties of Metallic systems

Antiferromagnetism

```
Negative exchange energy J_{AB} < 0.

\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow
```

At low temperatures, below the Neel temperature T_N , the spins are aligned antiparallel and the macroscopic magnetization is zero.

Spin ordering can be observed by neutron scattering.

At high temperature antiferromagnets become paramagnetic. The macroscopic magnetization is zero and the spins are disordered in zero field.

$$\chi = \mu_0 \frac{\vec{M}_A + \vec{M}_B}{\vec{B}_a} = \frac{C}{T + \Theta}$$
 Curie-Weiss temperature

Antiferromagnetism <u>t</u>tttt

Average spontaneous magnetization is zero at all temperatures.

Substance	Paramagnetic ion lattice	Transition temperature, T_N , in K	Curie-Weiss θ , in K	$rac{ heta}{T_N}$	$rac{\chi(0)}{\chi(T_N)}$
MnO	fcc	116	610	5.3	23
MnS	fcc	160	528	3.3	0.82
MnTe	hex. layer	307	690	2.25	
MnF_{2}	bc tetr.	67	82	1.24	0.76
FeF,	bc tetr.	79	117	1.48	0.72
$FeCl_2$	hex. layer	24	48	2.0	< 0.2
FeO	fee	198	570	2.9	0.8
$CoCl_2$	hex. layer	25	38.1	1.53	
CoO	fcc	291	330	1.14	
$NiCl_2$	hex. layer	50	68.2	1.37	
NiO	fee	525	~2000	~4	
Cr	bee	308			
	Paramagnetism	Ferromagnetism	Antiferromagnetism		
	Susceptibility χ	X	X		
		Complex behavior		<u>_</u>	from Kit
	$\chi = \frac{C}{T}$	$\chi = \frac{C}{T}$	$\chi = \frac{C}{T}$	25.01	
	Curie law	$T - T_c$ Curie-Weiss law $(T > T_c)$	$(T > T_N)$		

Table 2 Antiferromagnetic crystals \downarrow </t