

Technische Universität Graz

Diamagnetism

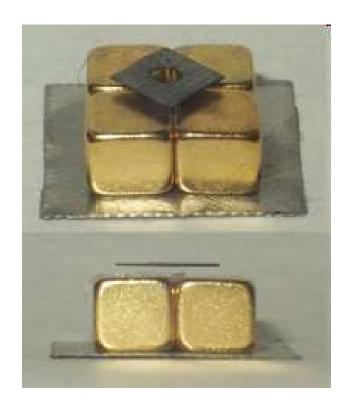
Diamagnetism

A free electron in a magnetic field will travel in a circle

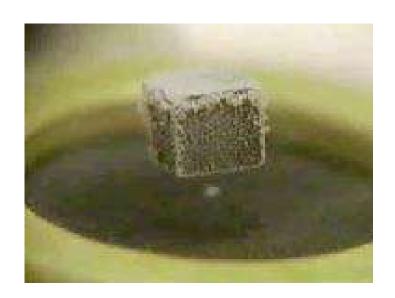
The magnetic created by the current loop is opposite the applied field.

Diamagnetism

Dissipationless currents are induced in a diamagnet that generate a field that opposes an applied magnetic field.


Current flow without dissipation is a quantum effect. There are no lower lying states to scatter into. This creates a current that generates a field that opposes the applied field.

 $\chi = -1$ superconductor (perfect diamagnet)


 $\chi \sim -10^{-6}$ - 10^{-5} normal materials

Diamagnetism is always present but is often overshadowed by some other magnetic effect.

Levitating diamagnets

Levitating pyrolytic carbon

NOT: Lenz's law $V = -\frac{d\Phi}{dt}$

Levitating frogs

 χ for water is -9.05 \times 10⁻⁶

16 Tesla magnet at the Nijmegen High Field Magnet Laboratory http://www.hfml.ru.nl/froglev.html

Andre Geim

2000 Ig Nobel Prize for levitating a frog with a magnet

Andre Geim

Born: 1958, Sochi, Russia

Affiliation at the time of the award:

University of Manchester, Manchester, United Kingdom

Prize motivation: "for groundbreaking experiments regarding the two-dimensional material graphene"

Diamagnetism

A dissipationless current is induced by a magnetic field that opposes the applied field.

$$\vec{M} = \chi \vec{H}$$

Diamagnetic susceptibility

Copper	-9.8×10^{-6}
Diamond	-2.2×10^{-5}
Gold	-3.6×10^{-5}
Lead	-1.7×10^{-5}
Nitrogen	-5.0×10^{-9}
Silicon	-4.2×10^{-6}
water	-9.0×10^{-6}
bismuth	-1.6×10^{-4}

Most stable molecules have a closed shell configuration and are diamagnetic.