Technische Universität Graz

Crystal Physics

[^0]
Crystal Physics

Crystal physics explains what effects the symmetries of the crystal have on observable quantities.

International Tables for Crystallography http://it.iucr.org/

Kittel chapter 3: elastic strain

http://it.iucr.org

2006 edition available through TU Graz library

```
| home | resources | purchase | contact us | help |
INTERNATIONAL TABLES Physical properties of crystals
|A|A1|B|C| |E|F|G|
```

Home > Volume D > Contents

International Tables for Crystallography Volume D: Physical properties of crystals
 Second online edition (2013) ISBN: 978-1-118-76229-5 doi: 10.1107/97809553602060000113

Edited by A. Authier

Contents

Part 1. Tensorial aspects of physical properties
1.1. Introduction to the properties of tensors (pp. 3-33) | html | pdf | chapter contents | A. Authier
1.1.1. The matrix of physical properties (pp. 3-5) | html | pdf |
1.1.2. Basic properties of vector spaces (pp. 5-7) | html | pdf |
1.1.3. Mathematical notion of tensor (pp. 7-10) | html | pdf |
1.1.4. Symmetry properties (pp. 10-31) | html | pdf |
1.1.5. Thermodynamic functions and physical property tensors (pp. 31-32) | html | pdf |
1.1.6. Glossary (pp. 32-33) | html | pdf |

References | html | pdf |
1.2. Representations of crystallographic groups (pp. 34-71) | html| pdf | chapter contents | T. Janssen
1.2.1. Introduction (pp. 34-35) | html| pdf|
1.2.2. Point groups (pp. 35-46) | html| pdf|
1.2.3. Space groups (pp. 46-51) | html | pdf |
1.2.4. Tensors (pp. 51-53) | html | pdf |
1.2.5. Magnetic symmetry (pp. 53-56) | html | pdf |
1.2.6. Tables (pp. 56-62) | html| pdf |
1.2.7. Introduction to the accompanying software Tenyar (pp. 62-70) | html | pdf |
M. Ephraïm, T. Janssen, A. Janner and A. Thiers
1.2.8. Glossary (pp. 70-71) | html| pdf |

References | html| pdf |
1.3. Elastic properties (pp. 72-99) | html | pdf | chapter contents |
A. Authier and A. Zarembowitch
1.3.1. Strain tensor (pp. 72-76) | html | pdf |
1.3.2. Stress tensor (pp. 76-80) | html | pdf |

Strain

A distortion of a material is described by the strain matrix

$$
\begin{aligned}
& x^{\prime}=\left(1+\varepsilon_{x x}\right) \hat{x}+\varepsilon_{x y} \hat{y}+\varepsilon_{x z} \hat{z} \\
& y^{\prime}=\varepsilon_{y x} \hat{x}+\left(1+\varepsilon_{y y}\right) \hat{y}+\varepsilon_{y z} \hat{z} \\
& z^{\prime}=\varepsilon_{z x} \hat{x}+\varepsilon_{z y} \hat{y}+\left(1+\varepsilon_{z z}\right) \hat{z}
\end{aligned}
$$

Stress

9 forces describe the stress
$X x, X y, X z, Y x, Y y, Y z, Z x, Z y, Z z$

$$
\text { stress tensor: } \quad \sigma=\left[\begin{array}{ccc}
\frac{Y_{x}}{A_{x}} & \frac{Y_{y}}{A_{y}} & \frac{Y_{z}}{A_{z}} \\
\frac{Z_{x}}{A_{x}} & \frac{Z_{y}}{A_{y}} & \frac{Z_{z}}{A_{z}}
\end{array}\right]
$$

$X x$ is a force applied in the x-direction to the plane normal to x
$X y$ is a sheer force applied in the x-direction to the plane normal to y

Stress is force $/ \mathrm{m}^{2}$

Stress and Strain

$$
\varepsilon_{i j}=S_{i j k l} \sigma_{k l}
$$

The stress - strain relationship is described by a rank 4 stiffness tensor. The inverse of the stiffness tensor is the compliance tensor.

$$
\sigma_{i j}=c_{i j k l} \varepsilon_{k l}
$$

Einstein convention: sum over repeated indices.

$$
\begin{aligned}
& \varepsilon_{x x}=S_{x x x x} \sigma_{x x}+S_{x x x y} \sigma_{x y}+S_{x x x z} \sigma_{x z}+S_{x x y x} \sigma_{y x}+s_{x x y y} \sigma_{y y} \\
& +S_{x x y z} \sigma_{y z}+S_{x x z x} \sigma_{z x}+S_{x x z y} \sigma_{z y}+S_{x x z z} \sigma_{z z}
\end{aligned}
$$

Statistical Physics

Microcannonical Ensemble: Internal energy is expressed in terms of extrinsic quantities $U(S, M, P, \varepsilon, N)$.

$$
\begin{gathered}
d U=\frac{\partial U}{\partial S} d S+\frac{\partial U}{\partial \varepsilon_{i j}} d \varepsilon_{i j}+\frac{\partial U}{\partial P_{k}} d P_{K}+\frac{\partial U}{\partial M_{l}} d M_{l} \\
d U=T d S+\sigma_{i j} d \varepsilon_{i j}+E_{k} d P_{K}+H_{l} d M_{l}
\end{gathered}
$$

The normal modes must be solved for in the presence of electric and magnetic fields.

Internal energy in an electric field

In an electric field, if the dipole moment is changed, the change of the energy is,

$$
\Delta U=\vec{E} \cdot \Delta \vec{P}
$$

Using Einstein notation

$$
d U=E_{k} d P_{k}
$$

This is part of the total derivative of U

$$
E_{k}=\frac{\partial U}{\partial P_{k}}
$$

$$
d U=T d S+\sigma_{i j} d \varepsilon_{i j}+E_{k} d P_{K}+H_{l} d M_{l}
$$

$$
d U=\frac{\partial U}{\partial S} d S+\frac{\partial U}{\partial \varepsilon_{i j}} d \varepsilon_{i j}+\frac{\partial U}{\partial P_{k}} d P_{K}+\frac{\partial U}{\partial M_{l}} d M_{l}
$$

Statistical Physics

Microcannonical Ensemble: Internal energy is expressed in terms of extrinsic quantities $U(S, M, P, \varepsilon, N) . \quad \varepsilon_{i j} \Rightarrow V \varepsilon_{i j}$

$$
\begin{aligned}
& d U=\frac{\partial U}{\partial S} d S+\frac{\partial U}{\partial \varepsilon_{i j}} d \varepsilon_{i j}+\frac{\partial U}{\partial P_{k}} d P_{K}+\frac{\partial U}{\partial M_{l}} d M_{l} \\
& d U=T d S+\sigma_{i j} d \varepsilon_{i j}+E_{k} d P_{K}+H_{l} d M_{l}
\end{aligned}
$$

Cannonical ensemble: At constant temperature, make a Legendre transformation to the Helmholtz free energy.
$F=U-T S$
$F(V, T, N, M, P, \varepsilon)$
Make a Legendre transformation to the Gibbs potential $G(T, H, E, \sigma)$

$$
G=U-T S-\sigma_{i j} \varepsilon_{i j}-E_{k} P_{K}-H_{l} M_{l}
$$

Helmholtz free energy

Cannonical ensemble: At constant temperature, make a Legendre transformation to the Helmholtz free energy.

$$
\begin{gathered}
F=U-T S \\
F(T, N, M, P, \varepsilon) \\
d F=\frac{\partial F}{\partial T} d T+\frac{\partial F}{\partial N_{i}} d N_{i}+\frac{\partial F}{\partial \varepsilon_{i j}} d \varepsilon_{i j}+\frac{\partial F}{\partial P_{K}} d P_{k}+\frac{\partial F}{\partial M_{l}} d M_{l} \\
d F=d U-T d S-S d T \\
d F=-S d T+\mu_{i} d N_{i}+\sigma_{i j} d \varepsilon_{i j}+E_{k} d P_{k}+H_{l} d M_{l} \\
S=-\left(\frac{\partial F}{\partial T}\right)_{N, M, P, \varepsilon} \mu_{i}=\left(\frac{\partial F}{\partial N_{i}}\right)_{T, M, P, \varepsilon, N_{j \neq i}} \sigma_{i j}=\left(\frac{\partial F}{\partial \varepsilon_{i j}}\right)_{N, M, P, T} \\
E_{k}=\left(\frac{\partial F}{\partial P_{k}}\right)_{N, M, T, \varepsilon} \quad H_{l}=\left(\frac{\partial F}{\partial M_{l}}\right)_{N, T, P, \varepsilon}
\end{gathered}
$$

Gibbs free energy

$$
\begin{gathered}
G(T, \mu, H, E, \sigma) \\
G=U-T S-\mu_{i} N_{i}-\sigma_{i j} \varepsilon_{i j}-E_{k} P_{K}-H_{l} M_{l} \\
d U=T d S+\mu_{i} d N_{i}+\sigma_{i j} d \varepsilon_{i j}+E_{k} d P_{K}+H_{l} d M_{l} \\
d G=-S d T-N_{i} d \mu_{i}-\varepsilon_{i j} d \sigma_{i j}-P_{k} d E_{k}-M_{l} d H_{l} \\
d G=\left(\frac{\partial G}{\partial T}\right) d T+\left(\frac{\partial G}{\partial \mu_{i}}\right) d \mu_{i}+\left(\frac{\partial G}{\partial \sigma_{i j}}\right) d \sigma_{i j}+\left(\frac{\partial G}{\partial E_{k}}\right) d E_{k}+\left(\frac{\partial G}{\partial H_{l}}\right) d H_{l} \\
S=-\left(\frac{\partial G}{\partial T}\right)_{\sigma, E, H, \mu} \quad N_{i}=-\left(\frac{\partial G}{\partial \mu_{i}}\right)_{T, E, H, \sigma} \quad \varepsilon_{i j}=-\left(\frac{\partial G}{\partial \sigma_{i j}}\right)_{T, E, H, \mu} \\
P_{k}=-\left(\frac{\partial G}{\partial E_{k}}\right)_{T, \mu, H, \sigma} \quad M_{l}=-\left(\frac{\partial G}{\partial H_{l}}\right)_{T, \mu, E, \sigma}
\end{gathered}
$$

$$
\begin{aligned}
& d \varepsilon_{i j}=\left(\frac{\partial \varepsilon_{i j}}{\partial \sigma_{k l}}\right) d \sigma_{k l}+\left(\frac{\partial \varepsilon_{i j}}{\partial E_{k}}\right)^{1} d E_{k}+\left(\frac{\partial \varepsilon_{i j}}{\partial H_{l}}\right)^{2} d H_{l}+\left(\frac{\partial \varepsilon_{i j}}{\partial T}\right) d T \\
& d P_{i}=\left(\frac{\partial P_{i}}{\partial \sigma_{k l}}\right)^{2} d \sigma_{k l}+\left(\frac{\partial P_{i}}{\partial E_{k}}\right)^{2} d E_{k}+\left(\frac{\partial P_{i}}{\partial H_{l}}\right)^{4} d H_{l}+\left(\frac{\partial P_{i}}{\partial T}\right) d T \\
& d M_{i}=\left(\frac{\partial M_{i}}{\partial \sigma_{k l}}\right)^{5} d \sigma_{k l}+\left(\frac{\partial M_{i}}{\partial E_{k}}\right)^{6} d E_{k}+\left(\frac{\partial M_{i}}{\partial H_{l}}\right)^{7} d H_{l}+\left(\frac{\partial M_{i}}{\partial T}\right)^{9} d T \\
& d S=\left(\frac{\partial S}{\partial \sigma_{k l}}\right)^{11} d \sigma_{k l}+\left(\frac{\partial S}{\partial E_{k}}\right)^{10} d E_{k}+\left(\frac{\partial S}{\partial H_{l}}\right)^{12} d H_{l}+\left(\frac{\partial S}{\partial T}\right)^{15} d T
\end{aligned}
$$

1. Elastic deformation
2. Reciprocal (or converse) piezo-electric effect.
3. Reciprocal (or converse) piezo-magnetic effect.
4. Thermal dilatation.
5. Piezo-electric effect.
6. Electric polarization.
7. Magneto-electric polarization.
8. Pyroelectricity.
9. Piezo-magnetic effect.
10. Reciprocal (or converse) magneto-electric polarization.
11. Magnetic polarization.
12. Pyromagnetism
13. Piezo-caloric effect.
14. Electro-caloric effect.
15. Magneto-caloric effect.
16. Heat transmission.

Direct and reciprocal effects (Maxwell relations)

$$
\begin{aligned}
& -\left(\frac{\partial^{2} G}{\partial \sigma_{i j} \partial E_{k}}\right)=\left(\frac{\partial P_{k}}{\partial \sigma_{i j}}\right)=-\left(\frac{\partial^{2} G}{\partial E_{k} \partial \sigma_{i j}}\right)=\left(\frac{\partial \varepsilon_{i j}}{\partial E_{k}}\right)=d_{k i j} \\
& -\left(\frac{\partial^{2} G}{\partial \sigma_{i j} \partial H_{l}}\right)=\left(\frac{\partial M_{l}}{\partial \sigma_{i j}}\right)=-\left(\frac{\partial^{2} G}{\partial H_{l} \partial \sigma_{i j}}\right)=\left(\frac{\partial \varepsilon_{i j}}{\partial H_{l}}\right)=q_{l i j} \\
& -\left(\frac{\partial^{2} G}{\partial E_{k} \partial H_{l}}\right)=\left(\frac{\partial M_{j}}{\partial E_{k}}\right)=-\left(\frac{\partial^{2} G}{\partial H_{l} \partial E_{k}}\right)=\left(\frac{\partial P_{k}}{\partial H_{l}}\right)=\lambda_{l k} \\
& -\left(\frac{\partial^{2} G}{\partial \sigma_{i j} \partial T}\right)=\left(\frac{\partial S}{\partial \sigma_{i j}}\right)=-\left(\frac{\partial^{2} G}{\partial T^{2} \partial \sigma_{i j}}\right)=\left(\frac{\partial \varepsilon_{i j}}{\partial T}\right)=\alpha_{i j} \\
& -\left(\frac{\partial^{2} G}{\partial T \partial E_{k}}\right)=\left(\frac{\partial P_{k}}{\partial T}\right)=-\left(\frac{\partial^{2} G}{\partial E_{k} \partial T}\right)=\left(\frac{\partial S}{\partial E_{k}}\right)=p_{k} \\
& -\left(\frac{\partial^{2} G}{\partial T \partial H_{l}}\right)=\left(\frac{\partial M_{l}}{\partial T}\right)=-\left(\frac{\partial^{2} G}{\partial H_{j} \partial T}\right)=\left(\frac{\partial S}{\partial H_{l}}\right)=m_{l}
\end{aligned}
$$

Useful to check for errors in experiments or calculations

Multiferroics

simultaneously ferroelectric and ferromagnetic

BiFeO_{3}

If two magnetic sublattices have different charge, changing the magnetic field can change the polarization and changing the electric field can change the magnetization.

Maxwell relations

$$
\begin{aligned}
& +\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V}=\frac{\partial^{2} U}{\partial S \partial V} \\
& +\left(\frac{\partial T}{\partial P}\right)_{S}=+\left(\frac{\partial V}{\partial S}\right)_{P}=\frac{\partial^{2} H}{\partial S \partial P} \\
& +\left(\frac{\partial S}{\partial V}\right)_{T}=+\left(\frac{\partial P}{\partial T}\right)_{V}=-\frac{\partial^{2} F}{\partial T \partial V} \\
& -\left(\frac{\partial S}{\partial P}\right)_{T}=+\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{\partial^{2} G}{\partial T \partial P}
\end{aligned}
$$

Useful to check for errors in experiments or calculations

Replace P and V with σ and ε

The properties of solids

$$
H=-\sum_{i} \frac{\hbar^{2}}{2 m_{e}} \nabla_{i}^{2}-\sum_{A} \frac{\hbar^{2}}{2 m_{A}} \nabla_{A}^{2}-\sum_{i, A} \frac{Z_{A} e^{2}}{4 \pi \varepsilon_{0} r_{i A}}+\sum_{i<j} \frac{e^{2}}{4 \pi \varepsilon_{0} r_{i j}}+\sum_{A<B} \frac{Z_{A} Z_{B} e^{2}}{4 \pi \varepsilon_{0} r_{A B}}
$$

structure

electronic band structure E vs. k
bond potentials
phonon band structure ω vs. k \downarrow

density of states
equilibrium properties ${ }^{c} c_{v}$, free energies, bulk modulus,...
absorption

optical properties

Calculating free energies

Electronic component

$$
\begin{aligned}
& n=\int_{-\infty}^{\infty} \frac{D(E)}{1+\exp \left(\frac{E-\mu}{k_{B} T}\right)} d E \\
& u=\int_{-\infty}^{\infty} \frac{E D(E)}{1+\exp \left(\frac{E-\mu}{k_{B} T}\right)} d E
\end{aligned}
$$

Phonon component

$$
u=\int_{-\infty}^{\infty} \frac{E D(E)}{\exp \left(\frac{E-\mu}{k_{B} T}\right)-1} d E
$$

Groups

Crystals can have symmetries: translation, rotation, reflection, inversion,...

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & \sin \alpha \\
0 & -\sin \alpha & \cos \alpha
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

Symmetries can be represented by matrices.
All such matrices that bring the crystal into itself form the group of the crystal.

$$
A, B \in G \quad A B \in G
$$

32 point groups (one point remains fixed during transformation)
230 space groups

Cyclic groups

$C_{2} \quad E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], C_{2}=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$C_{4} \quad E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], C_{4}=\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], C_{2}=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right], C_{4}^{3}=\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
$E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], C_{6}=\left[\begin{array}{ccc}\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right], C_{3}=\left[\begin{array}{ccc}-\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right], C_{2}=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right], C_{3}^{2}=\left[\begin{array}{ccc}-\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right], C_{6}^{5}=\left[\begin{array}{ccc}\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right]$
http://en.wikipedia.org/wiki/Cyclic_group

Pyroelectricity $\quad \pi_{i}=-\left(\frac{\partial^{2} G}{\partial E_{i} \partial T}\right)$

Pyroelectricity is described by a rank 1 tensor

$$
\begin{gathered}
\pi_{i}=\frac{\partial P_{i}}{\partial T} \\
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
\pi_{x} \\
\pi_{y} \\
\pi_{z}
\end{array}\right]=\left[\begin{array}{c}
\pi_{x} \\
\pi_{y} \\
-\pi_{z}
\end{array}\right] \Rightarrow\left[\begin{array}{c}
\pi_{x} \\
\pi_{y} \\
0
\end{array}\right]} \\
{\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
\pi_{x} \\
\pi_{y} \\
\pi_{z}
\end{array}\right]=\left[\begin{array}{l}
-\pi_{x} \\
-\pi_{y} \\
-\pi_{z}
\end{array}\right] \Rightarrow\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

Pyroelectricity

Quartz, ZnO , LaTaO_{3}

example

Turmalin: point group 3 m for $\Delta T=1^{\circ} \mathrm{C}$, $\Delta \mathrm{E} \sim 7 \cdot 10^{4} \mathrm{~V} / \mathrm{m}$

Pyroelectrics have a spontaneous polarization. If it can be reversed by an electric field they are called Ferroelectrics $\left(\mathrm{BaTiO}_{3}\right)$

Pyroelectrics are at Joanneum research to make infrared detectors (to detect humans).

10 Pyroelectric crystal classes: $1,2, \mathrm{~m}, \mathrm{~mm} 2,3,3 \mathrm{~m}, 4,4 \mathrm{~mm}, 6,6 \mathrm{~mm}$

Rank 2 Tensors

Electric susceptibility
Dielectric constant
Magnetic susceptibility
Thermal expansion
Electrical conductivity
Thermal conductivity
Seebeck effect
Peltier effect

Electric susceptibility $\quad \chi_{i j}=-\left(\frac{\partial^{2} G}{\partial E_{i} \partial E_{j}}\right)$

$$
\begin{gathered}
P_{i}=\chi_{i j} E_{j} \\
{\left[\begin{array}{l}
P_{x} \\
P_{y} \\
P_{z}
\end{array}\right]=\left[\begin{array}{lll}
\chi_{x x} & \chi_{x y} & \chi_{x z} \\
\chi_{y x} & \chi_{y y} & \chi_{y z} \\
\chi_{z x} & \chi_{z y} & \chi_{z z}
\end{array}\right]\left[\begin{array}{l}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right]}
\end{gathered}
$$

Transforming P and E by a crystal symmetry must leave the susceptibility tensor unchanged

$$
U \vec{P}=\chi U \vec{E} \quad U^{-1} U \vec{P}=U^{-1} \chi U \vec{E} \quad \chi=U^{-1} \chi U
$$

If rotation by 180 about the z axis is a symmetry,

$$
\begin{aligned}
U=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad U^{-1}=U=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad U^{-1} \chi U=\left[\begin{array}{ccc}
\chi_{x x} & \chi_{x y} & -\chi_{x z} \\
\chi_{y x} & \chi_{y y} & -\chi_{y z} \\
-\chi_{\mathrm{zx}} & -\chi_{z y} & \chi_{z z}
\end{array}\right] \\
\chi_{\mathrm{xz}}=\chi_{\mathrm{yz}}=\chi_{\mathrm{zx}}=\chi_{\mathrm{zy}}=0
\end{aligned}
$$

The 32 Crystal Classes

Cubic crystals

All second rank tensors of cubic crystals reduce to constants

216: ZnS, GaAs, GaP, InAs
221: CsCl , cubic perovskite
225: Al, $\mathrm{Cu}, \mathrm{Ni}, \mathrm{Ag}, \mathrm{Pt}, \mathrm{Au}, \mathrm{Pb}, \mathrm{NaCl}$
227: C, Si, Ge, spinel
229: $\mathrm{Na}, \mathrm{K}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{Nb}, \mathrm{Mo}, \mathrm{Ta}$

23	T	195-199		12	
$m 3$	$T \mathrm{n}$	200-206		24	
432	0	207-214		24	000
$\overline{4} 3 m$	T_{d}	215-220	216: Zincblende, ZnS , GaAs, GaP, InAs, SiC	24	
m3m	On	221-230	221: CsCl , cubic perovskite 225: fcc, A1, Cu, Ni, $\mathrm{Ag}, \mathrm{Pt}, \mathrm{Au}, \mathrm{Pb}, \gamma-\mathrm{Fe}$, NaCl 227: diamond, C. Si,	48	

Material	$\rho(\Omega \cdot \mathrm{m})$ at $20{ }^{\circ} \mathrm{C}$	$\sigma(\mathrm{S} / \mathrm{m})$ at $20{ }^{\circ} \mathrm{C}$	Temperature coefficient ${ }^{[\text {note 1] }}$ (K^{-1})	Reference
Silver	1.59×10^{-8}	6.30×10^{7}	0.0038	[7][8]
Copper	1.68×10^{-8}	5.96×10^{7}	0.0039	[8]
Annealed copper ${ }^{[\text {[note 2] }}$	1.72×10^{-8}	5.80×10^{7}		[citation needed]
Gold [note 3]	2.44×10^{-8}	4.10×10^{7}	0.0034	[7]
Aluminium ${ }^{\text {[note 4] }}$	2.82×10^{-8}	3.5×10^{7}	0.0039	${ }^{[7]}$
Calcium	3.36×10^{-8}	2.98×10^{7}	0.0041	
Tungsten	5.60×10^{-8}	1.79×10^{7}	0.0045	[7]
Zinc	5.90×10^{-8}	1.69×10^{7}	0.0037	[9]
Nickel	6.99×10^{-8}	1.43×10^{7}	0.006	
Lithium	9.28×10^{-8}	1.08×10^{7}	0.006	
Iron	1.0×10^{-7}	1.00×10^{7}	0.005	[7]
Platinum	1.06×10^{-7}	9.43×10^{6}	0.00392	${ }^{[7]}$
Tin	1.09×10^{-7}	9.17×10^{6}	0.0045	
Carbon steel (1010)	1.43×10^{-7}	6.99×10^{6}		[10]
Lead	2.2×10^{-7}	4.55×10^{6}	0.0039	[7]
Titanium	4.20×10^{-7}	2.38×10^{6}	X	
Grain oriented electrical steel	4.60×10^{-7}	2.17×10^{6}		[11]
Manganin	4.82×10^{-7}	2.07×10^{6}	0.000002	[12]
Constantan	4.9×10^{-7}	2.04×10^{6}	0.000008	[13]
Stainless steel ${ }^{\text {[note 5] }}$	6.9×10^{-7}	1.45×10^{6}		[14]
Mercury	9.8×10^{-7}	1.02×10^{6}	0.0009	[12]
Nichrome ${ }^{[\text {note 6] }}$	1.10×10^{-6}	9.09×10^{5}	0.0004	[7]
GaAs	5×10^{-7} to 10×10^{-3}	5×10^{-8} to 10^{3}		[15]
Carbon (amorphous)	5×10^{-4} to 8×10^{-4}	1.25 to 2×10^{3}	-0.0005	[7][16]
Carbon (graphite) ${ }^{[\text {note 7] }}$	$2.5 \mathrm{e} \times 10^{-6}$ to $5.0 \times 10^{-6} / / \mathrm{b}$ asal plane 3.0×10^{-3} 」basal plane	2 to $3 \times 10^{5} / /$ basal plane $3.3 \times 10^{2} \perp$ basal plane		[17]
Carbon (diamond) ${ }^{\text {[note 8] }}$	1×10^{12}	$\sim 10^{-13}$		[18]
Germanium ${ }^{\text {[note 8] }}$	4.6×10^{-1}	2.17	-0.048	[7][8]
Sea water ${ }^{\text {[note 9] }}$	2×10^{-1}	4.8		[19]
In. . . Innte 1 nl	- $101 \cdot$ - 10.3	- An-4, r ans		\|ritatina mearlent

Rutile

From Wikinadia tha fron anmuminnadia

```
_symmetry_equiv_pos_as_xyz
```

RI | $\overline{1}$ | $-y+1 / 2$, | $x+1 / 2$, |
| :--- | :--- | :--- |
| 2 | $-z+1 / 2$ | |
| | $y+1 / 2$, | $-x+1 / 2$, |

RI $\begin{array}{lll}1 & -y+1 / 2, & x+1 / 2, \\ 2 & -z+1 / 2\end{array}$ ' $y+1 / 2, \quad-x+1 / 2, \quad-z+1 / 2$ '
R1 3 ' $y, x,-z$ '
4 ' $-\mathrm{y},-\mathrm{x},-\mathrm{z}$ '
- 5 ' $y+1 / 2,-x+1 / 2, z+1 / 2$ '
- 6 ' $-y+1 / 2, x+1 / 2, z+1 / 2^{\prime}$
RI $_{8}^{7}{ }^{\prime}$ ' $-y,-x, z^{\prime}$
pe 9 ' $x+1 / 2,-y+1 / 2,-z+1 / 2$ '
of 10 ' $-x+1 / 2, y+1 / 2,-z+1 / 2$ '
N a $11{ }^{\prime} \mathrm{x}, \mathrm{y},-\mathrm{z}$ '
th 12 ' $-x,-y,-z$
13 ' $-x+1 / 2, y+1 / 2, z+1 / 2$ '
14 ' $x+1 / 2,-y+1 / 2, z+1 / 2$ '
$15^{\prime}-x,-y, z^{\prime}$
16 ' x, y, z
loop.
3 _atom_type_symbol
4 _atom_type_oxidation_number
${ }_{5}$ Ti4+4
02--2
loop_
_atom_site_label
_atom_site_type_symbol
O -atom_site_symmetry_multiplicity
_atom_site_Wyckoff_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_B_iso_or_equiv
_atom_site_occupancy
_atom_site_attached_hydrogens
Ti1 Ti4+2 a 000 . 1. 0
01 02- 4 f $0.30479(10) 0.30479(10) 0.1 .0$
--
re known
al mineral of pseudo-octahedral habit
own crystal, and also exhibits a it is useful for the manufacture of certain avelengths up to about $4.5 \mu \mathrm{~m}$.
d tantalum. Rutile derives its name from mens when viewed by transmitted light.

I high-temperature and high-pressure
S.
able polymorph of TiO_{2} at all energy than metastable phases of
e trancformation of the metastahle Tin

Rank 3 Tensors

Piezoelectricity
Piezomagnetism
Hall effect
Nerst effect
Ettingshausen effect
Nonlinear electrical
susceptibility

Tensor notation

We need a way to represent 3rd and 4th rank tensors in 2-d.

$$
\begin{array}{lll}
11 \rightarrow 1 & 12 \rightarrow 6 & 13 \rightarrow 5 \\
& 22 \rightarrow 2 & 23 \rightarrow 4 \\
& & 33 \rightarrow 3
\end{array}
$$

rank 3

$$
g_{36} \rightarrow g_{312}
$$

rank 4
$g_{14} \rightarrow g_{1123}$

Piezoelectricity

average position + is
average position -

$$
P_{k}=-\left(\frac{\partial G}{\partial E_{k}}\right)
$$

Piezoelectricity (rank 3 tensor)

AFM's, STM's
Quartz crystal oscillators
Surface acoustic wave generators
Pressure sensors - Epcos
Fuel injectors - Bosch
Inkjet printers
No inversion symmetry

Piezoelectric crystal classes: $1,2, \mathrm{~m}, 222, \mathrm{~mm} 2,4,-4,422,4 \mathrm{~mm},-42 \mathrm{~m}, 3,32,3 \mathrm{~m}, 6,-6,622,6 \mathrm{~mm},-62 \mathrm{~m}, 23,-43 \mathrm{~m}$

[^0]: Technische Universität Graz

