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Vortices in Superconductors
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Lorentz force

Faraday's law
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Defects are used to pin the vortices



Superconducting Magnets

Whole body MRI



Magnets and cables

Maglev trains



ITER

Magnet wire

Nb3Sn Magnet



Superconducting magnets

Largest superconducting magnet, CERN
21000 Amps



ac - Josephson effect

10 V standard

Brian Josephson

http://www.nist.gov/pml/history-volt/superconductivity_2000s.cfm
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SQUID

Superconducting quantum interference device

10-6 0 / (Hz)1/2

10-20 m/ (Hz)1/2

Gravity wave detector
Sensitive detectors
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Linear Response Theory



Fourier transforms
Impulse response functions (Green's functions)
Generalized susceptibility
Causality
Kramers-Kronig relations
Fluctuation - dissipation theorem
Dielectric function
Optical properties of solids
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Classical linear response theory 
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http://lampx.tugraz.at/~hadley/num/ch3/3.3a.php



Notations for Fourier Transforms

f(r) is built of plane waves



http://lamp.tu-graz.ac.at/~hadley/ss1/crystaldiffraction/ft/ft.php



Properties of Fourier transforms



Convolution (Faltung)

( )* ( ) ( ) ( )f r g r f r g r r dr  
     



Impulse response function (Green's functions)

21 4( ) exp sin      0
2 2
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A Green's function is the solution to a linear differential 
equation for a -function driving force

has the solution 

For instance,
2

2 ( )d g dgm b kg t
dt dt

  



Green's functions

   ( )f t t t f t dt    

A driving force f can be thought of a being built up of many delta 
functions after each other.

By superposition, the response to this driving function is superposition,

( ) ( ) ( )u t g t t f t dt   
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has the solution 

For instance,
2

2 ( )d u dum b ku f t
dt dt

  

Green's function converts a differential equation into an integral equation



Generalized susceptibility

A driving function f causes a response u

If the driving force is sinusoidal,
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The response will also be sinusoidal.

The generalized susceptibility at frequency  is



Generalized susceptibility

( ) u
f

  

http://lam
px.tugraz.at/~hadley/physikm

/apps/resonance.en.php



Generalized susceptibility

Since the integral is over t', the factor with t can be put in the integral. 
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Change variables to  = t - t',  d = -dt', reverse the limits of integration 

The susceptibility is the Fourier transform of the Green's function. 

( )( ) ( ) i t tg t t e dt     
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First order differential equation
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The Fourier transform of a decaying exponential is a Lorentzian
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Susceptibility
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Assume that u and F are sinusoidal 0          i t i tu Ae F F e  

The sign of the imaginary part depends on whether you use eit or e-it. 



Susceptibility
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Fourier transform the differential equation 

1
b i m









2

2 ( )d g dgm b kg t
dt dt

  

2 4
2

b b mk
m



  


Damped mass-spring system
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Fourier transform pair

tg e



dx Mx
dt


 

More complex linear systems

Any coupled system of linear differential equations can be 
written as a set of first order equations

The solutions have the form it
ix e

where        are the eigenvectors and i are the eigenvalues of 
matrix M. 

ix

Re(i) < 0 for stable systems

i is either real and negative (overdamped) or comes in complex 
conjugate pairs with a negative real part (underdamped). 



More complex linear systems

Low frequency "1/f noise"
resonances

frequency
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Any function f(t) can be written in terms of its odd and even components

Odd and even components

The Fourier transform of  E(t) is real and even
The Fourier transform of O(t) is imaginary and odd

E(t) = ½[f(t) + f(-t)] 

f(t) = E(t) + O(t)

f(t) = ½[f(t) + f(-t)] + ½[f(t) - f(-t)]

O(t) =½[f(t) - f(-t)]

( ) cos ( ) sinE t tdt i O t tdt 
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odd component

even component exp( )t
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Causality and the Kramers-Kronig relations (I)

The real and imaginary parts of the susceptibility are related.

If you know ', inverse Fourier transform to find E(t). Knowing E(t) you 
can determine O(t) = sgn(t)E(t). Fourier transform O(t) to find ".

   ( ) ( ) ( ) cos( ) ( ) sin( )ig e d E d i O d i                     



Kramers-Kronig relations 

https://en.wikipedia.org/wiki/Kramers%E2%80%93Kronig_relations

If you know any of these for just positive frequencies, 
you can calculate all the others.



Causality and the Kramers-Kronig relation (II)

( ) sgn( ) ( )O t t E t

( ) sgn( ) ( )E t t O t
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Take the Fourier transform, use the convolution theorem.

1 ( )( ) P d   
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Singularity makes a numerical evaluation more difficult.  

P: Cauchy principle value (go around the singularity and 
take the limit as you pass by arbitrarily close)

Real space Reciprocal space

http://lamp.tu-graz.ac.at/~hadley/ss2/linearresponse/causality.php



Kramers-Kronig relations (III)
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Kramers-Kronig relations II

( ) ( )
( ) ( )

   
   
  
   

Real part is even
Imaginary part is odd
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change variables '-'
(4 minus signs)



Kramers-Kronig relations (III)
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Singularity is stronger in this form. 


