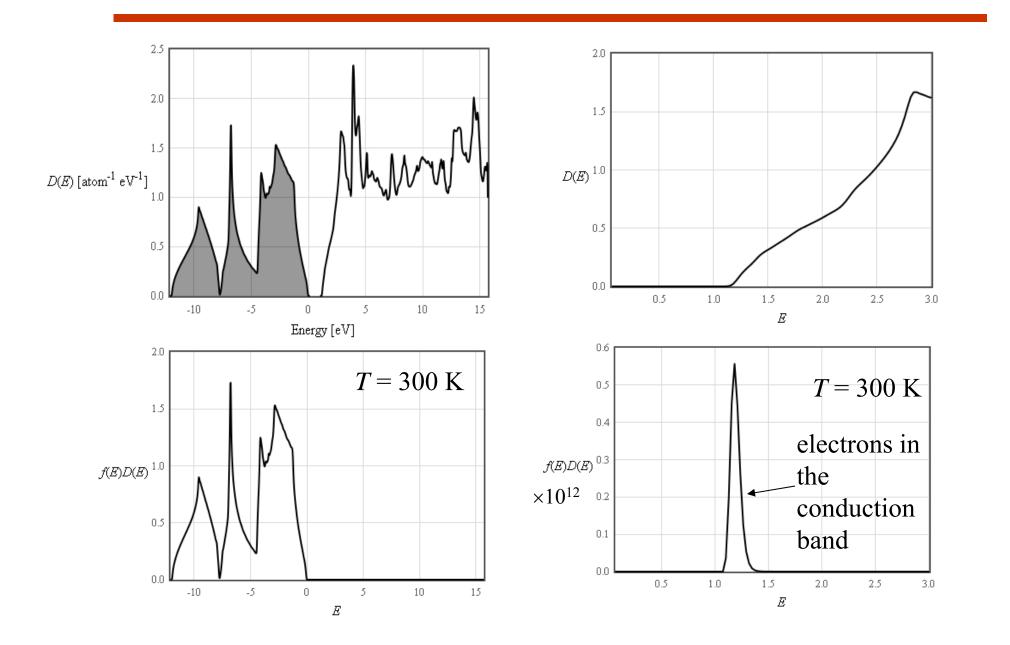


Technische Universität Graz

7. Semiconductors

Silicon density of states

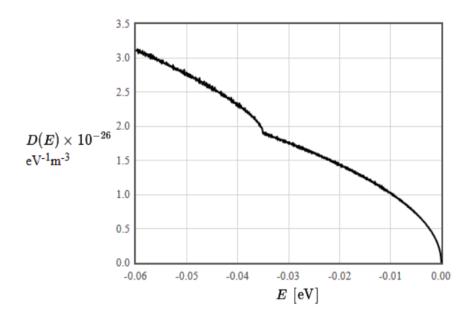


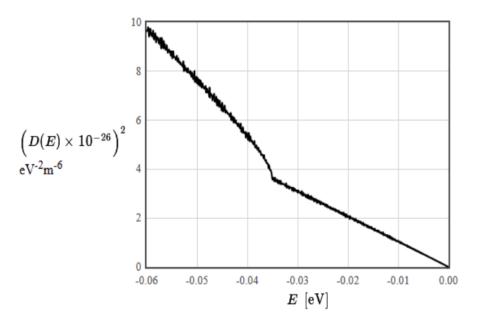
Silicon valence bands

$$E_{v,lh} = -rac{\hbar^2}{2m_e} \Big(4.1 k^2 - \sqrt{1.21 k^4 + 4.1 (k_x^2 k_y^2 + k_x^2 k_z^2 + k_y^2 k_z^2)} \Big) \, ,$$

$$E_{v,hh} = -rac{\hbar^2}{2m_e} \Big(4.1 k^2 + \sqrt{1.21 k^4 + 4.1 (k_x^2 k_y^2 + k_x^2 k_z^2 + k_y^2 k_z^2)} \Big) \, ,$$

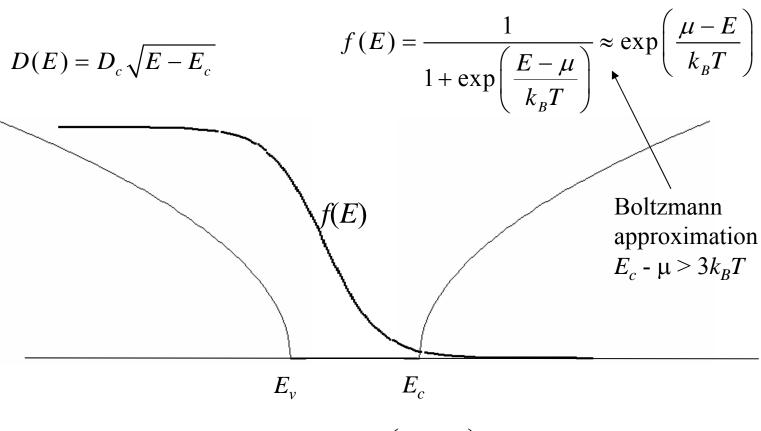
$$E_{v,so}=-E_{so}-rac{\hbar^2k^2}{2m_{so}}.$$





Density of electrons in the conduction band

The free electron density of states is modified by the effective mass.



$$n = \int_{E_c}^{\infty} D(E) f(E) dE \approx D_c \int_{E_c}^{\infty} \exp\left(\frac{\mu - E}{k_B T}\right) \sqrt{E - E_c} dE$$

Density of electrons in the conduction band

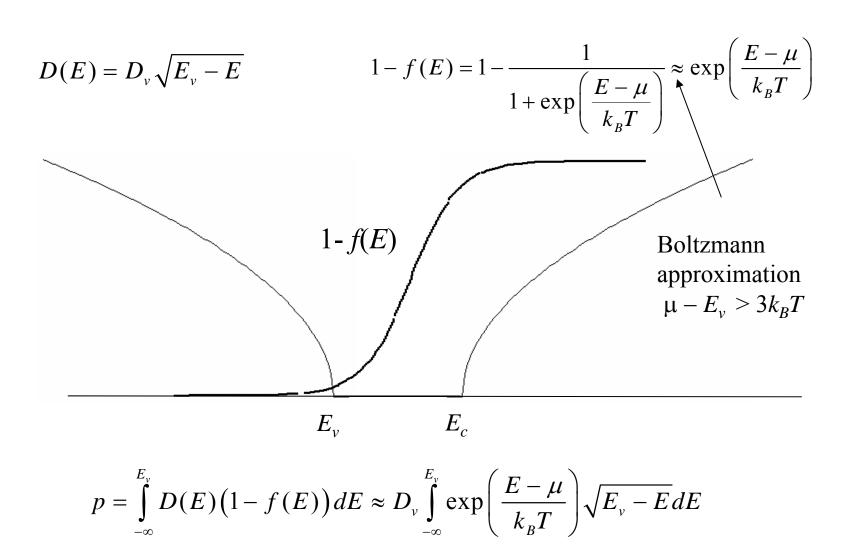
$$n = \int_{E_c}^{\infty} D(E) f(E) dE \approx D_c \int_{E_c}^{\infty} \exp\left(\frac{\mu - E}{k_B T}\right) \sqrt{E - E_c} dE$$

$$x = E - E_c \qquad \int_0^\infty \sqrt{x} \exp\left(\frac{-x}{k_B T}\right) dx = \frac{2}{\sqrt{\pi}} (k_B T)^{3/2}$$

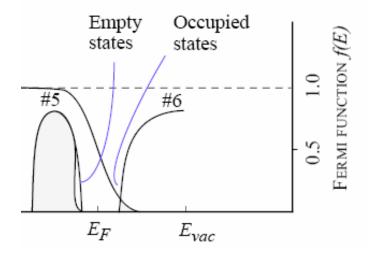
$$n = N_c(T) \exp\left(\frac{\mu - E_c}{k_B T}\right) = \frac{2D_c}{\sqrt{\pi}} (k_B T)^{3/2} \exp\left(\frac{\mu - E_c}{k_B T}\right)$$

$$N_c = \frac{2D_c}{\sqrt{\pi}} (k_B T)^{3/2} = 2 \left(\frac{m^* k_B T}{2\pi \hbar^2} \right)^{3/2} = \text{effective density of states}$$

Density of holes in the valence band



Density of holes in the valence band



$$p = \int_{-\infty}^{E_{v}} D(E) (1 - f(E)) dE \approx D_{v} \int_{-\infty}^{E_{v}} \exp\left(\frac{E - \mu}{k_{B}T}\right) \sqrt{E_{v} - E} dE$$

$$p = N_{v} \exp\left(\frac{E_{v} - \mu}{k_{B}T}\right) = \frac{2D_{v}}{\sqrt{\pi}} (k_{B}T)^{3/2} \exp\left(\frac{E_{v} - \mu}{k_{B}T}\right)$$

$$N_v = 2 \left(\frac{m_h^* k_B T}{2\pi \hbar^2}\right)^{3/2}$$
 = Effective density of states in the valence band

Law of mass action

$$np = N_c \exp\left(\frac{\mu - E_c}{k_B T}\right) N_v \exp\left(\frac{E_v - \mu}{k_B T}\right) E_c$$

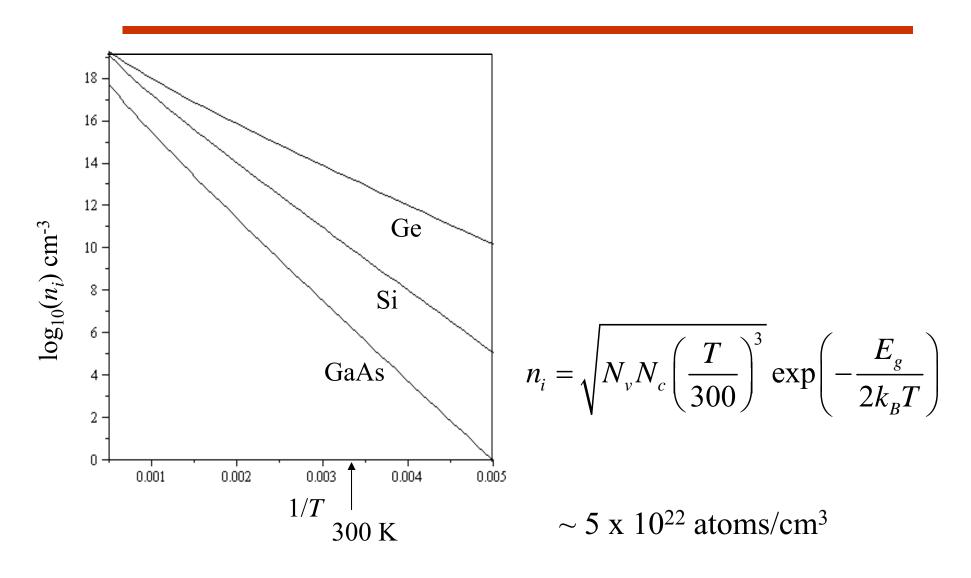
$$np = N_c N_v \exp\left(\frac{-E_g}{k_B T}\right)$$

$$E_v$$

For intrinsic semiconductors (no impurities)

$$n = p = n_i = \sqrt{N_c N_v} \exp\left(\frac{-E_g}{2k_B T}\right)$$
intrinsic carrier density

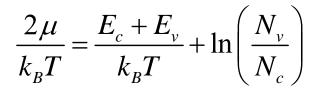
Intrinsic carrier concentration



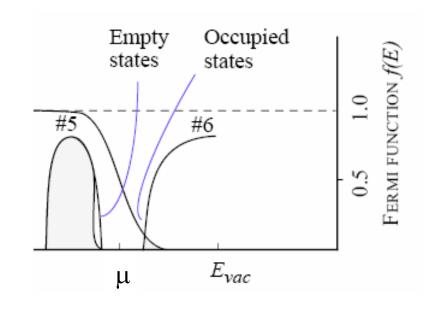
Chemical potential of an intrinsic semiconductor

$$n = p = N_c \exp\left(\frac{\mu - E_c}{k_B T}\right) = N_v \exp\left(\frac{E_v - \mu}{k_B T}\right)$$

$$\exp\left(\frac{\mu - E_c - E_v + \mu}{k_B T}\right) = \frac{N_v}{N_c}$$



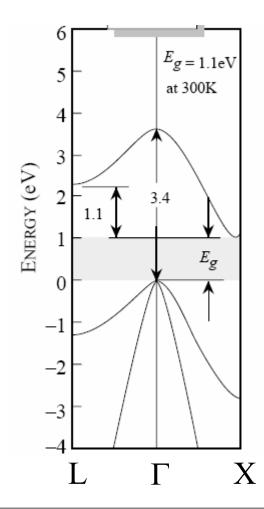
$$\mu = \frac{E_c + E_v}{2} + \frac{k_B T}{2} \ln \left(\frac{N_v}{N_c} \right)$$



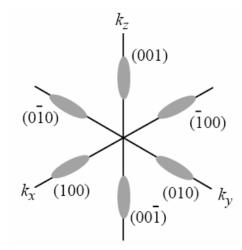
$$E_c$$

$$E_{v}$$

Density of electrons in the conduction band



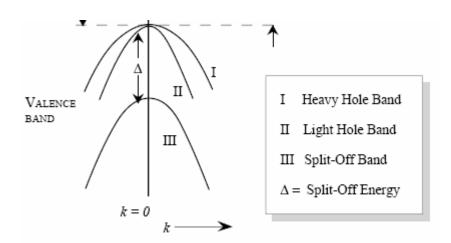
$$n = N_c(T) \exp\left(\frac{\mu - E_c}{k_B T}\right) = \frac{2D_v}{\sqrt{\pi}} (k_B T)^{3/2} \exp\left(\frac{\mu - E_c}{k_B T}\right)$$



$$n = N_c \left(\frac{T}{300}\right)^{3/2} \exp\left(\frac{E_F - E_c}{k_B T}\right)$$

Properties	Si	Ge	GaAs
Bandgap $E_{m{g}}$	1.12 eV	0.66 eV	1.424 eV
Effective density of states in conduction band (300 K) N_c	2.78 × 10 ²⁵ m ⁻³	$1.04 \times 10^{25} \mathrm{m}^{-3}$	4.45 × 10 ²³ m ⁻³

Density of electrons in the conduction band Density of holes in the valence band



$$n = N_c \left(\frac{T}{300}\right)^{3/2} \exp\left(\frac{\mu - E_c}{k_B T}\right)$$

$$p = N_{v} \left(\frac{T}{300}\right)^{3/2} \exp\left(\frac{E_{v} - \mu}{k_{B}T}\right)$$

Properties	Si	Ge	GaAs
Bandgap $E_{m{g}}$	1.12 eV	0.66 eV	1.424 eV
Effective density of states in conduction band (300 K) N_c	$2.78 \times 10^{25} \mathrm{m}^{-3}$	$1.04 \times 10^{25} \mathrm{m}^{-3}$	4.45 × 10 ²³ m ⁻³
Effective density of states in valence band (300 K) $N_{ u}$	9.84 × 10 ²⁴ m ⁻³	$6.0 \times 10^{24} \mathrm{m}^{-3}$	$7.72 \times 10^{24} \mathrm{m}^{-3}$
Effective mass electrons $m{m}^{\star}/m{m_0}$	$m_l^* = 0.98$ $m_t^* = 0.19$	$m_l^* = 1.64$ $m_t^* = 0.082$	$m^* = 0.067$
Effective mass holes $m{m^{^{\star}}/m_0}$	$m_{lh}^* = 0.16$ $m_{hh}^* = 0.49$	$m_{lh}^* = 0.044$ $m_{hh}^* = 0.28$	$m_{lh}^* = 0.082$ $m_{hh}^* = 0.45$
Crystal structure	diamond	diamond	zincblende
Density	2.328 g/cm³	5.3267 g/cm³	5.32 g/cm³
Atoms/m³	5.0 × 10 ²⁸	4.42 × 10 ²⁸	4.42 × 10 ²⁸

The electrical contribution to the thermodynamic properties of insulators depend on band edges

Boltzmann approximation

The table below gives the contribution of electrons in intrinsic semiconductors and insulators to some thermodynamic quantities. These results where calculated in the Boltzmann approximation where it is assumed that the chemical potential lies in the band gap more than $3k_BT$ from the band edge. The electronic contribution to the thermodynamic quantities are usually much smaller than the contribution of the phonons and thus the electronic components are often simply ignored.

	1-d	2-d	
Density of states $m_e^{\ *}$ and $m_h^{\ *}$ are 'density of states' effective masses	$rac{1}{\hbar\pi} \sqrt{rac{2m_h^*}{(E_{\nu} - E)}} E < E_{\nu}$ $D(E) = 0 E_{\nu} < E < E_{c} \mathbf{J}^{-1} \mathbf{m}^{-1}$ $rac{1}{\hbar\pi} \sqrt{rac{2m_e^*}{(E - E_{c})}} E > E_{c}$	$\frac{m_h^*}{\hbar^2 \pi} H(E_v - E) \qquad E < E_v$ $D(E) = \qquad 0 \qquad E_v < E < E_c \qquad J^{-1} \text{ m}^{-2}$ $\frac{m_e^*}{\hbar^2 \pi} H(E - E_c) E > E_c$ $H(x) = 0 \text{for} x < 0 \text{ and } H(x) = 1 \text{for} x > 0$	
Density of states $N_{ extstyle extstyle } N_{ extstyle } N_{ extstyle extstyle } N_{ extstyle } N_{ extstyle extstyle } N_{ extstyle extstyle } N_{ extst$	$N_{\nu}(300)\sqrt{rac{2}{300\pi k_{B}(E_{\nu}-E)}} \qquad E < E_{\nu}$ $D(E) = \qquad 0 \qquad E_{\nu} < E < E_{c} \qquad \mathbf{J}^{-1} \ \mathbf{m}^{-1}$ $N_{c}(300)\sqrt{rac{2}{300\pi k_{B}(E-E_{c})}} \qquad E > E_{c}$	$D(E) = \frac{N_{\nu}(300)}{300k_{B}}H(E_{\nu} - E) E < E_{\nu}$ $D(E) = 0 E_{\nu} < E < E_{c} J^{-1} \text{ m}^{-2}$ $\frac{N_{c}(300)}{300k_{B}}H(E - E_{c}) E > E_{c}$	
Density of electrons in the conduction band $n = \int_{0}^{\infty} D(H) f(H) dH$	$n = \sqrt{\frac{m_e^* k_B T}{\hbar^2 \pi}} \exp\left(\frac{\mu - E_c}{k_B T}\right) \mathbf{m}^{-1}$	$n = \frac{m_e^* k_B T}{\hbar^2 \pi} \exp\left(\frac{\mu - E_c}{k_B T}\right) \text{m}^{-2}$	
$n = \int_{E_{\epsilon}} D(E) f(E) dE$	$= N_c \exp\left(\frac{\mu - E_c}{k_B T}\right)$	$= N_c \exp\left(\frac{\mu - E_c}{k_B T}\right)$	
Density of holes in the valence band E_{r}	$p = \sqrt{\frac{m_h^* k_B T}{\hbar^2 \pi}} \exp\left(\frac{E_{\nu} - \mu}{k_B T}\right) \mathbf{m}^{-1}$	$p = \frac{m_h^* k_B T}{\hbar^2 \pi} \exp\left(\frac{E_v - \mu}{k_B T}\right) \text{m}^{-2}$	
$p = \int_{-\infty}^{\infty} D(E) (1 - f(E)) dE$	$=N_{\nu}\exp\left(rac{\mu-E_{c}}{k_{-}T} ight)$	$=N_{\nu}\exp\left(\frac{\mu-E_{c}}{k_{-}T}\right)$	

Intrinsic semiconductors

In the Boltzmann approximation, the density of states of a semiconductor is,

$$D(E) = \left\{ egin{array}{ll} rac{{{{\left({2m_h^*}
ight)}^{3/2}}}}{{2{\pi ^2}\hbar ^3}}\sqrt {E_v - E}, & ext{if } E < E_v \ 0, & ext{if } E_v < E < E_c \ rac{{{{\left({2m_e^*}
ight)}^{3/2}}}}{{2{\pi ^2}\hbar ^3}}\sqrt {E - E_c}, & ext{if } E_c < E \end{array}
ight.$$

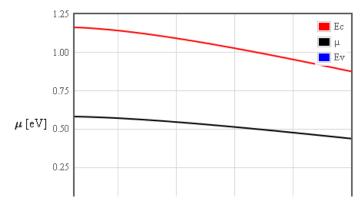
Here m_e^* and m_h^* are the 'density of states effective masses' for electrons and holes. Usually in the literature, effective density of states at 300 K is given instead of the 'density of states effective masses'. The relationship between the two is,

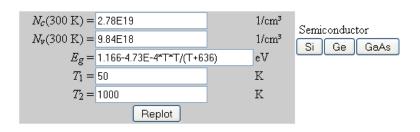
$$m_{h}^{*} = rac{\pi \hbar^{2}}{300 k_{B}} \left(\sqrt{2} N_{v}(300)
ight)^{2/3} \ m_{e}^{*} = rac{\pi \hbar^{2}}{300 k_{B}} \left(\sqrt{2} N_{c}(300)
ight)^{2/3}$$

In an intrinsic semiconductor, the density of electrons equals the density of holes, $n=p=n_i=\sqrt{N_c \left(\frac{T}{300}\right)^{3/2}N_v \left(\frac{T}{300}\right)^{3/2}}\exp\left(\frac{-E_g}{2k_BT}\right)$.

By setting the concentration of electrons equal to the concentration of holes, it is possible to solve for the chemical potential. The bandgap of most semiconductors is temperature dependent. The form below lets you input the temperature dependance of the bandgap. The bandgaps for some semiconductors can be loaded into the form with the buttons on the right.

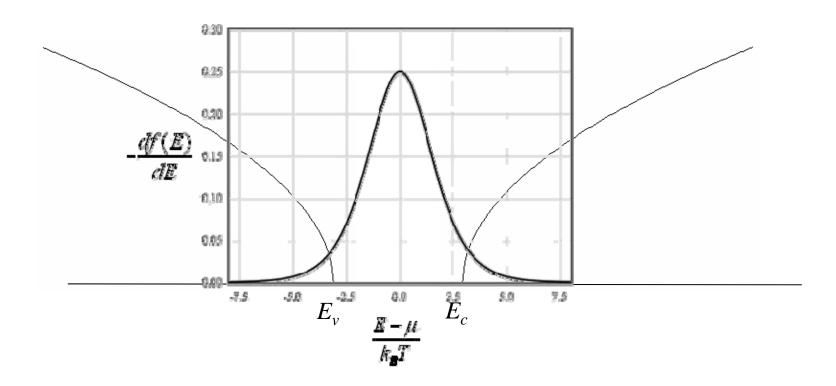
$$n = N_c(300) \left(rac{T}{300}
ight)^{3/2} \exp\left(rac{\mu - E_c}{k_B T}
ight) = p = N_v(300) \left(rac{T}{300}
ight)^{3/2} \exp\left(rac{E_v - \mu}{k_B T}
ight)$$
 , $\mu = rac{E_v + E_c}{2} + k_B T \ln\left(rac{N_v(300)}{N_c(300)}
ight)$.



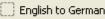


http://lamp.tu-graz.ac.at/~hadley/ss1/semiconductors/intrinsic.php

Narrow bandgap semiconductors



Use the programs for metals for small bandgap semiconductors.



- Silicon - Germanium Si Ge

- Gallium Phosphide - Gallium Arsenide GaP GaAs:

- Indium Arsenide InAs C - Diamond

- Indium Antimonide GaSb - Gallium Antimonide InSb

InP - Indium Phosphide - Gallium Arsenide Antimonide GaAs_{1-x}Sb_x

Al_xGa_{1-x}As - Aluminium Gallium Arsenide

- Aluminium Nitride - Indium Nitride AlN. InN - Gallium Nitride - Boron Nitride BN GaN

We are going to add new data for:

 $Ga_xIn_{1-x}As_ySb_{1-y}$ - Gallium Indium Arsenide Antimonide $Ga_xIn_{1-x}P$ - Gallium Indium Phosphide

 $Ga_xIn_{1-x}As$ - Gallium Indium Arsenide Ga_xIn_{1-x}Sb - Gallium Indium Antimonide - Indium Arsenide Antimonide $InAs_{1-x}Sb_x$ $Ga_xIn_{1-x}As_vP_{1-v}$ - Gallium Indium Arsenide Phosphide

- Silicon Germanium SiC - Silicon Carbide Si_{1-x}Ge_x

Effective Masses

Electrons:

The surfaces of equal energy are ellipsoids.

 $m_1 = 0.98 m_0$

 $m_t = 0.19 m_0$

Effective mass of density of states $m_c = 0.36m_o$

There are 6 equivalent valleys in the conduction band.

 $m_{cc}=0.26m_{o}$

Holes:

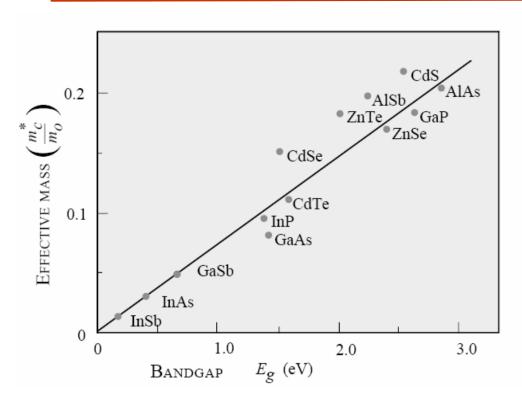
Heavy $m_h = 0.49 m_0$

Light $m_{lp} = 0.16 m_o$

Split-off band $m_{so} = 0.24 m_o$

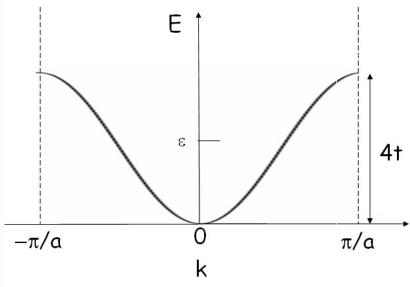
Effective mass of density of states $m_{V} = 0.81 m_{O}$

Large gap -> large effective mass



$$m^* = \frac{\hbar^2}{\frac{d^2 E}{dk^2}}$$

narrow bands -> large effective mass



$$E_k = \varepsilon - 2t \cos(ka)$$

$$\frac{d^2E}{dk^2} = 2ta^2$$
* 1

$$m^* \sim \frac{1}{t}$$

Measuring the effective mass

Cyclotron resonance
$$\omega_c = \frac{eB}{m^*}$$

Resonant absorption occurs when rf waves with the cyclotron resonance frequency are applied. This can be used to experimentally determine the effective mass.

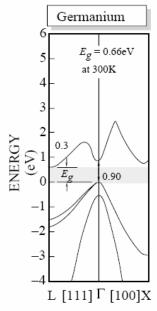
Knowing the effective mass, the scattering time can be calculated from the measured conductivity.

$$\sigma = \frac{ne^2\tau_{sc}}{m^*}$$

Direct and indirect band gaps

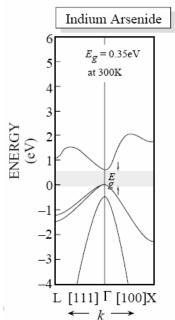
indirect bandgap $\Delta k \neq 0$

phonons are emitted



direct bandgap: $\Delta k = 0$

photons can be emitted

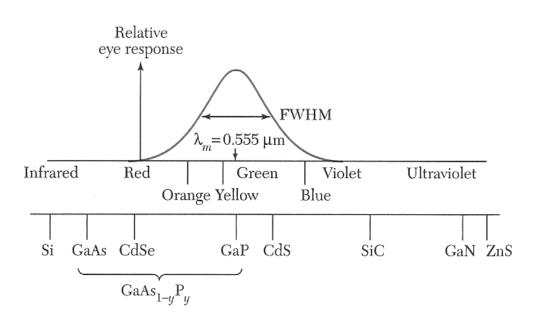


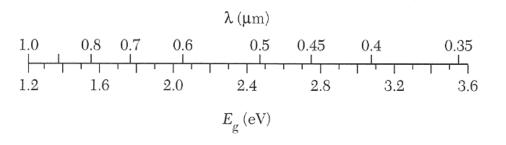
Momentum must be conserved when photons are absorbed or emitted.

TABLE 1 Common III-V materials used to produce LEDs and their emission wavelengths.

Material	Wavelength (nm)
InAsSbP/InAs	4200
InAs	3800
GaInAsP/GaSb	2000
GaSb	1800
$Ga_x In_{1-x} As_{1-y} P_y$	1100-1600
$Ga_{0.47}In_{0.53}As$	1550
$Ga_{0.27}In_{0.73}As_{0.63}P_{0.37}$	1300
GaAs:Er,InP:Er	1540
Si:C	1300
GaAs:Yb,InP:Yb	1000
$Al_xGa_{1-x}As:Si$	650-940
GaAs:Si	940
$Al_{0.11}Ga_{0.89}As:Si$	830
Al _{0.4} Ga _{0.6} As:Si	650
$GaAs_{0.6}P_{0.4}$	660
$GaAs_{0.4}P_{0.6}$	620
$GaAs_{0.15}P_{0.85}$	590
$(Al_xGa_{1-x})_{0.5}In_{0.5}P$	655
GaP	690
GaP:N	550-570
$Ga_xIn_{1-x}N$	340,430,590
SiC	400-460
BN	260,310,490

Light emitting diodes





Extrinsic semiconductors

The introduction of impurity atoms that can and electrons or holes is called doping.

n-type: donor atoms contribute electrons to the conduction band.

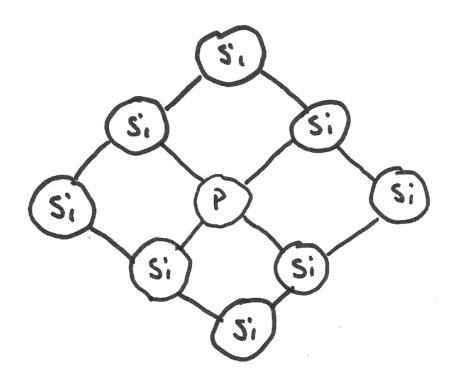
Examples: P, As in Si.

p-type: acceptor atoms contribute holes to the valence band.

Examples: B, Ga, Al in Si.

	ША	IVA	VA	VIA
	В	C	N	O°
ІІВ	Al	Si ¹⁴	P 15	S 16
Zn	Ga ³¹	Ge	As	Se
Cd	In	Sn	Sb	Te

Ionization of dopants



Easier to ionize a P atom in Si than a free P atom

$$E_n = -\frac{me^4}{8\varepsilon_0^2 h^2 n^2}$$

Ionization energy is smaller by a factor: $\frac{m^*}{m} \left(\frac{\varepsilon_0}{\varepsilon_r \varepsilon_0} \right)^2$

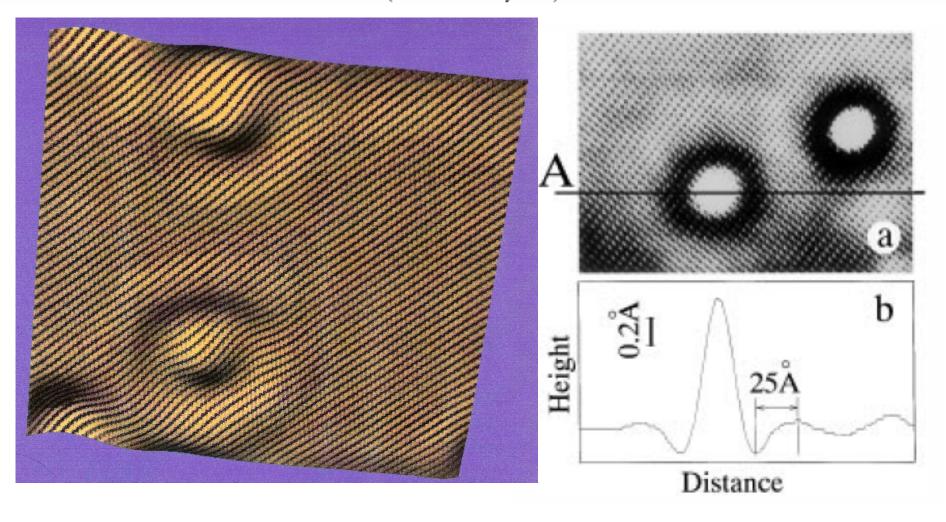
Ionization energy $\sim 25 \text{ meV}$

Direct Observation of Friedel Oscillations around Incorporated Si_{Ga} Dopants in GaAs by Low-Temperature Scanning Tunneling Microscopy

M. C. M. M. van der Wielen, A. J. A. van Roij, and H. van Kempen

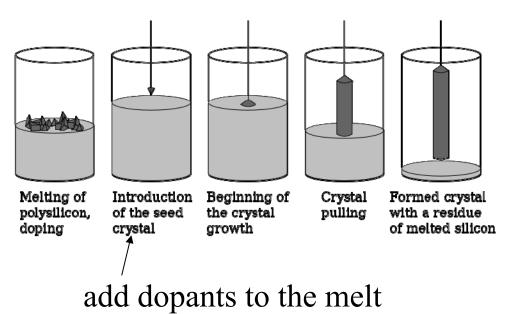
Research Institute for Materials, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

(Received 25 July 1995)



Crystal growth

Czochralski Process



images from wikipedia

Crystal growth

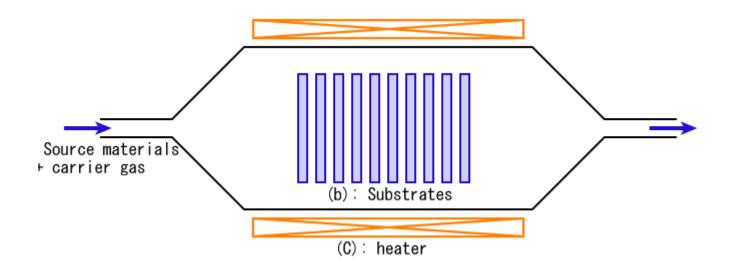
Float zone Process

Neutron transmutation

30
Si + n \rightarrow 31 Si + γ
 31 Si \rightarrow 31 P + β

image from wikipedia

Chemical vapor deposition

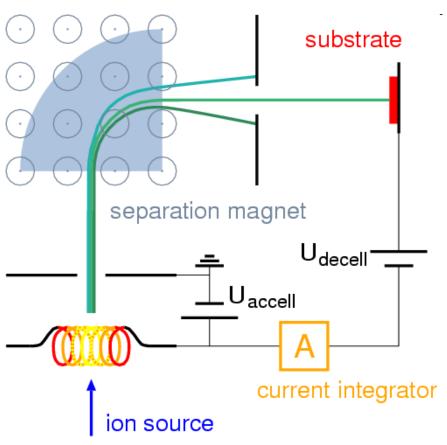


Epitaxial silicon CVD SiH₄ (silane) or SiH₂Cl₂ (dichlorosilane) PH₃ (phosphine) for n-doping or B₂H₆ (diborane) for p-doping.

Gas phase diffusion

AsH₃ (Arsine) or PH₃ (phosphine) for n-doping B₂H₆ (diborane) for p-doping.

Ion implantation

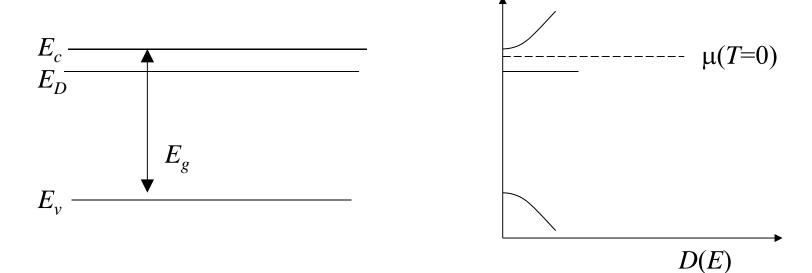


Implant at 7° to avoid channeling

Donors

Five valence electrons: P, As

States are added in the band gap just below the conduction band



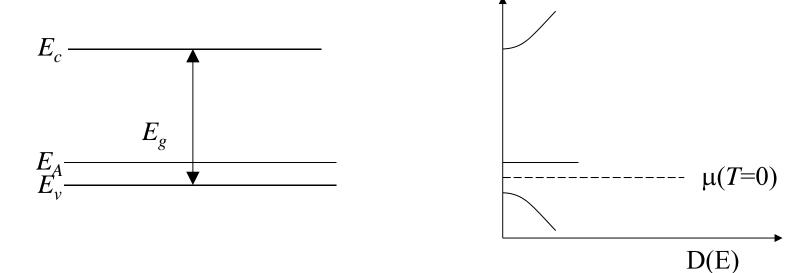
n-type: $n \sim N_D$ Many more electrons in the conduction band than holes in the valence band.

majority carriers: electrons; minority carriers: holes

Acceptors

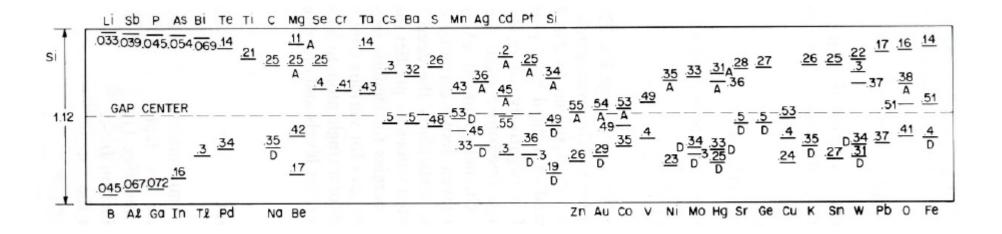
Three valence electrons: B, Al, Ga

States are added in the band gap just above the valence band



p-type: $p \sim N_A$ Many more holes in the valence band than electrons in the conduction band.

majority carriers: holes; minority carriers: electrons



Source: Semiconductor Devices Physics and Technology, S.M. Sze, 1985

Donor and Acceptor Energies

Semiconductor	Donor	Energy (meV)
Si	Li	33
	Sb	39
	P	45
	As	54
Ge	Li	9.3
	Sb	9.6
	P	12
	As	13
GaAs	Si	5.8
	Ge	6.0
	S	6.0
	Sn	6.0

Semiconductor	Acceptor	Energy (meV)
	В	45
Si	A1	67
51	Ga	72
	In	160
Ge	В	10
	A1	10
	Ga	11
	In	11
GaAs	C	26
	Be	28
	Mg	28
	Si	35

Energy below the conduction band

Energy above the valence band