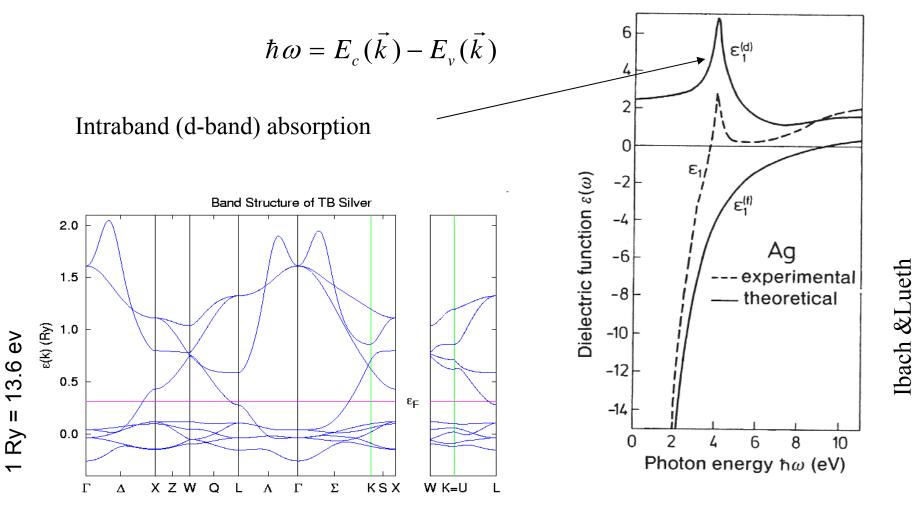
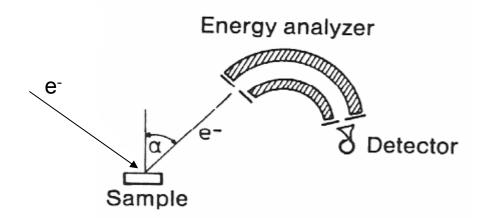


Technische Universität Graz

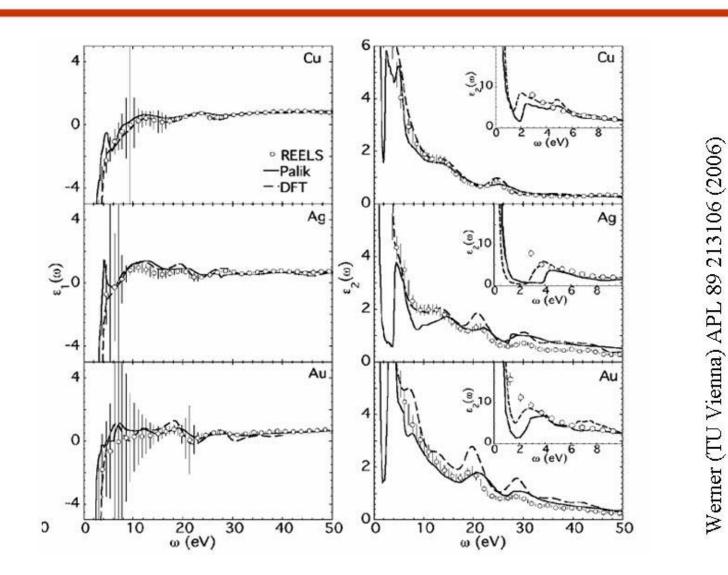

Institute of Solid State Physics

17. Microwave engineering/ Superconductivity


Nov. 29, 2018

Intraband transitions

When the bands are parallel, there is a peak in the absorption (ϵ ")



Reflection Electron Energy Loss Spectroscopy

Fast electrons moving through the solid generate and a time dependent electric field. If the polarization moves out of phase with this field, energy will be lost. This is detected in the reflected electrons.

Dielectric function of Cu, Ag, and Au obtained from reflection electron energy loss spectra, optical measurements, and density functional theory

Microwave engineering

Microwave frequencies are a few GHz

The wavelength is smaller than the circuit

Losses in metals increase with increasing frequency

Losses in dielectrics increase with increasing frequency

There is a characteristic length scale called the skin depth which tells us how far into a metal fields penetrate before they are reflected out.

Skin depth $\omega \tau << 1$

$$\sigma(\omega) = ne\mu \left(\frac{1-i\omega\tau}{1+\omega^2\tau^2}\right) \approx ne\mu = \sigma_0 \qquad \omega\tau << 1$$

Ohm's law
Take the curl
$$\vec{J} = \sigma_0 \vec{E}$$

Faraday's law
$$\nabla \times \vec{B} = \rho_0 \vec{J}$$

Faraday's law
$$\nabla \times \vec{B} = \mu_0 \vec{J}$$

Ampere's law
$$\frac{1}{\sigma_0 \mu_0} \nabla \times \nabla \times \vec{B} = -\frac{d\vec{B}}{dt}$$

Vector identity
$$\nabla \times \nabla \times \vec{B} = \nabla \left(\nabla \cdot \vec{B}\right) - \nabla^2 \vec{B}$$
$$\frac{1}{\sigma_0 \mu_0} \nabla^2 \vec{B} = \frac{d\vec{B}}{dt}$$

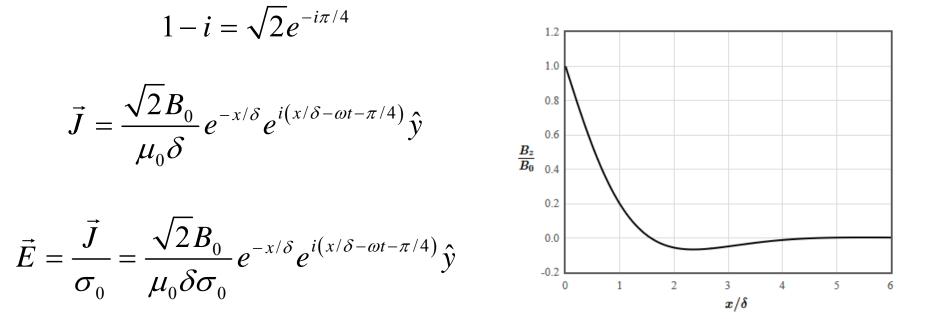
Skin depth

$$\frac{1}{\sigma_0 \mu_0} \nabla^2 \vec{B} = \frac{d\vec{B}}{dt}$$

Assume harmonic dependence

$$B_0 e^{i(kx-\omega t)}$$

$$\frac{k^2}{\sigma_0\mu_0} = i\omega$$


$$k = \sqrt{i\omega\sigma_{0}\mu_{0}} = \sqrt{\frac{\omega\sigma_{0}\mu_{0}}{2}} + i\sqrt{\frac{\omega\sigma_{0}\mu_{0}}{2}}$$

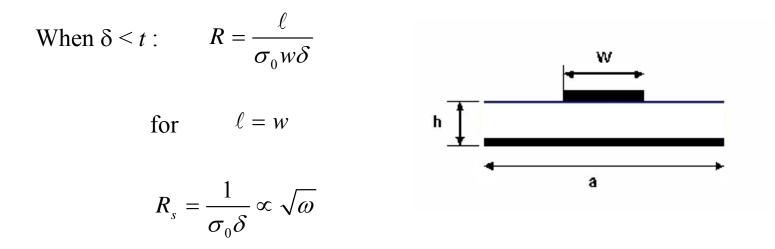
Skin depth $\delta = \sqrt{\frac{2}{\mu_{0}\sigma_{0}\omega}}$
Exponential decay

Light $\omega < \omega_p$ is reflected out of a metal. The waves penetrate a length δ .

Skin depth

$$\vec{B} = B_0 e^{-x/\delta} e^{i(x/\delta - \omega t)} \hat{z}$$

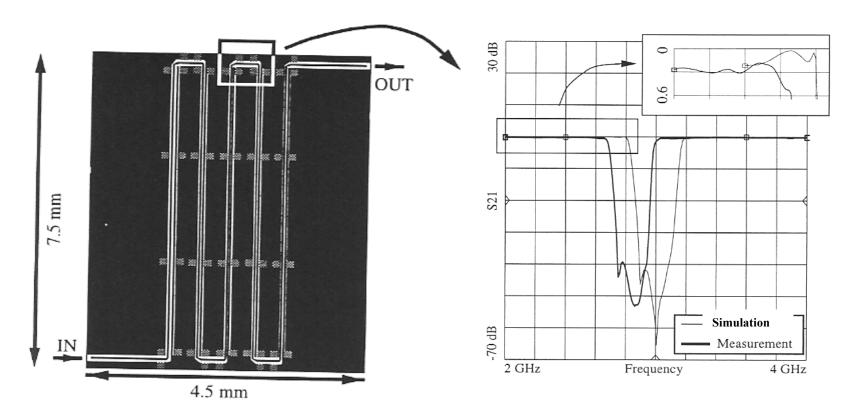
$$\vec{J} = \frac{1}{\mu_0} \nabla \times \vec{B} = \vec{B} = \frac{B_0 (1-i)}{\mu_0 \delta} e^{-x/\delta} e^{i(x/\delta - \omega t)} \hat{y}$$



The electric field lags behind the magnetic field by 45 degrees.

Surface resistance

At low frequencies:


$$R = \frac{\rho \ell}{wt} = \frac{\ell}{\sigma_0 wt}$$

Complex signal processing at high frequencies > 1 GHz is difficult because the losses increase with frequency.

Usually you mix down to a lower frequency as soon as possible.

Superconducting filter

Complex signal processing at high frequencies > 1 GHz is difficult because the losses increase with frequency.

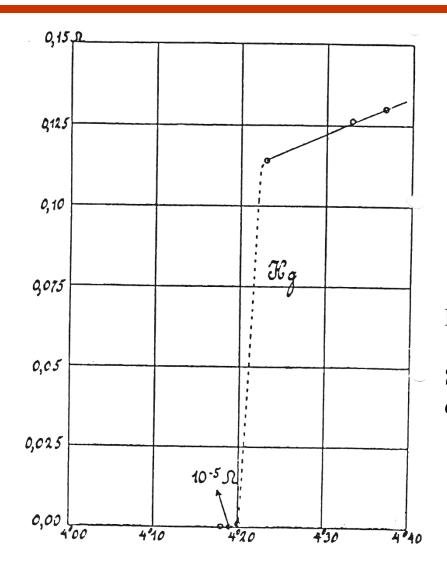
Technische Universität Graz

Institute of Solid State Physics

Superconductivity

Primary characteristic: zero resistance at dc

There is a critical temperature T_c above which superconductivity disappears


About 1/3 of all metals are superconductors

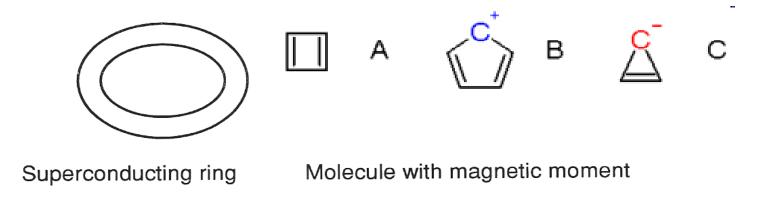
Metals are usually superconductors OR magnetic, not both

Good conductors are bad superconductors

Kittel chapter 10

Superconductivity

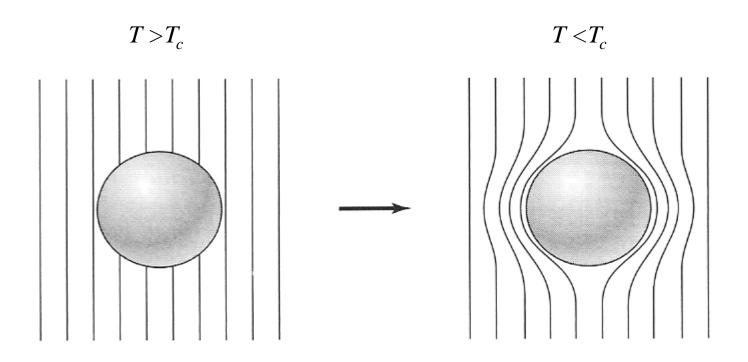
Heike Kammerling-Onnes


Superconductivity was discovered in 1911

Critical temperature

1 H				o			$T_{ m c}$ K					10					2 He
3 Li	4 Be 0.026	Superconducting T _c									S B	6 C	7 N	8 O	9 F	10 Ne	
11 Na	12 Mg										13 Al 1.14	14 Si	15 P	16 S	17 Cl	18 Ar	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37	38	39	0.39 40	5.38 41	42	43	44	45	46	47	0.875 48	1.091 49	50	51	52	53	54
Rb	Sr	Y	Zr 0.546	NЪ 9.5	Mo 0.92	Тс 7.77	Ru 0.51	Rh 0.003	Pd	Ag	Cd 0.56	In 3.403	Sn 3.722	Sb	Te	1	Xe
55 Cs	56 Ba	57 La 6	72 Hf 0.12	73 Ta 4.438	74 W 0.012	75 Re 1.4	76 Os 0.655	77 Ir 0.14	78 Pt	79 Au	80 Hg 4.153	81 T1 2.39	82 Рь 7.193	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt									
		58	59	60	61	62	63	64	65	66	67	68	69	70	71		

Ce	Pr	Nd	Pm	Sm Sm	Eu	Gd	Тъ	Dy	Ho	Er	Tm	70 ҮЪ	Lu 0.1
90 Th	91 Pa	92 11	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
1.368	1.4		1.15				2.M		20			110	

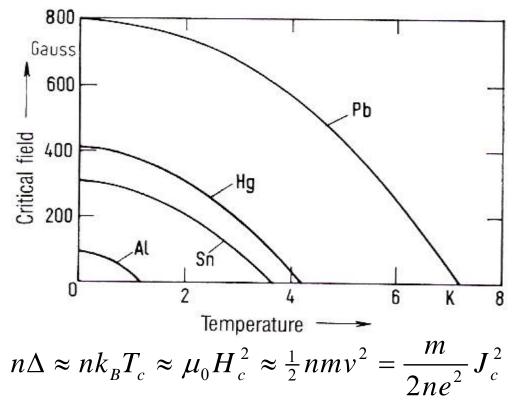

Superconductivity

Antiaromatic molecules are unstable and highly reactive

No measurable decay in current after 2.5 years. $\rho < 10^{-25} \Omega m$.

Meissner effect

Superconductors are perfect diamagnets at low fields. B = 0 inside a bulk superconductor.


Superconductors are used for magnetic shielding.

Superconductivity

Critical temperature T_c

Critical current density J_c

Critical field H_c

