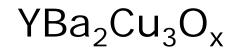


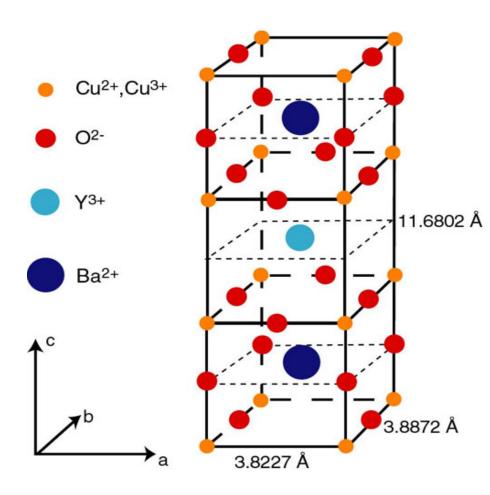
Technische Universität Graz

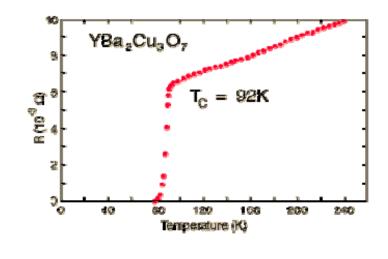
Institute of Solid State Physics

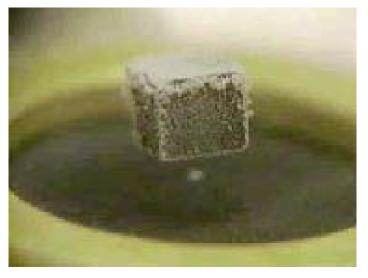
18. Superconductivity

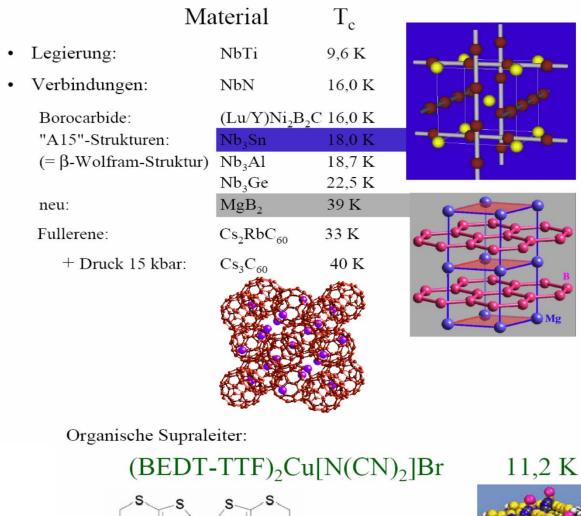
Dec. 3, 2018











Polymere hochdotierte Halbleiter

http://www.wmi.badw.de/teaching/Lecturenotes/index.html

Compound	T_{c} in K	Compound	T_{c} i
	18.05	V ₃ Ga	16
Nb ₃ Sn		VaSi	17
Nb ₃ Ge	23.2	4	90
NbaAl	17.5	$YBa_2Cu_3O_{6.9}$	31
NbN	16.0	Rb_2CsC_{60}	39
C ₆₀	19.2	MgB_2	00

*

æ

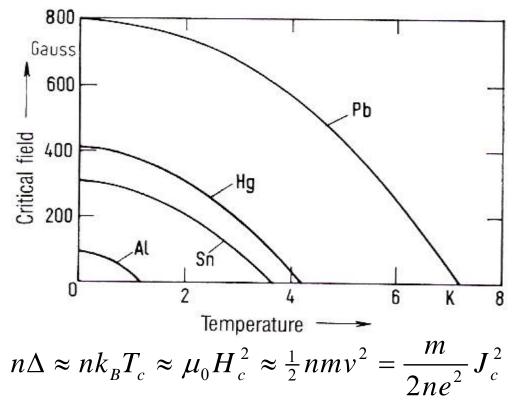
$BaPb_{0.75}Bi_{0.25}O_3$	$T_{c} = 12 \text{ K}$	[BPBO]
$La_{1.85}Ba_{0.15}CuO_4$	$T_{c} = 36 \text{ K}$	[LBCO]
$YBa_2Cu_3O_7$	$T_{c} = 90 \text{ K}$	[YBCO]
$Tl_2Ba_2Ca_2Cu_3O_{10}$	$T_{c} = 120 \text{ K}$	[TBCO]
$Hg_{0.8}Tl_{0.2}Ba_2Ca_2Cu_3O_{8.33}$	$T_c = 138 \text{ K}$	_
$(Sn_5In)Ba_4Ca_2Cu_{10}O_y$	$T_c = 212 \text{ K}$	

Superconductivity

Critical temperature T_c

Critical current density J_c

Critical field H_c



Superconductivity

Perfect diamagnetism

Jump in the specific heat like a 2nd order phase transition, not a structural transition

Superconductors are good electrical conductors but poor thermal conductors, electrons no longer conduct heat

There is a dramatic decrease of acoustic attenuation at the phase transition, no electron-phonon scattering

Dissipationless currents - quantum effect

Electrons condense into a single quantum state - low entropy.

Electron decrease their energy by Δ but loose their entropy.

Probability current

Schrödinger equation for a charged particle in an electric and magnetic field is

$$i\hbar\frac{\partial\psi}{\partial t} = \frac{1}{2m}(-i\hbar\nabla - qA)^2\psi + V\psi$$

write out the
$$(-i\hbar\nabla - qA)^2\psi$$
 term

$$i\hbar\frac{\partial\psi}{\partial t} = \frac{1}{2m} \left(-\hbar^2\nabla^2 + i\hbar qA\nabla + ihq\nabla A + q^2A^2\right)\psi + V\psi$$

write the wave function in polar form

$$\psi = |\psi| e^{i\theta}$$
$$\nabla \psi = \nabla |\psi| e^{i\theta} + i\nabla \theta |\psi| e^{i\theta}$$
$$\nabla^{2} \psi = \nabla^{2} |\psi| e^{i\theta} + 2i\nabla \theta \nabla |\psi| e^{i\theta} + i\nabla^{2} \theta |\psi| e^{i\theta} - (\nabla \theta)^{2} |\psi| e^{i\theta}$$

Probability current

Schrödinger equation becomes:

$$i\hbar \frac{\partial |\psi|}{\partial t} - \hbar |\psi| \frac{\partial \theta}{\partial t} = \frac{1}{2m} \Big[-\hbar^2 \Big(\nabla^2 |\psi| + 2i\nabla \theta \nabla |\psi| + i\nabla^2 \theta |\psi| - (\nabla \theta)^2 |\psi| \Big) \\ +i\hbar q A \Big(\nabla |\psi| + i\nabla \theta |\psi| \Big) + i\hbar q \nabla A |\psi| + q^2 A^2 |\psi| \Big] + V |\psi|$$

Real part:

$$-\hbar \left|\psi\right| \frac{\partial \theta}{\partial t} = \frac{-\hbar^2}{2m} \left(\nabla^2 - \left(\nabla \theta - \frac{q}{\hbar}\vec{A}\right)^2\right) \left|\psi\right| + V \left|\psi\right|$$

Imaginary part:

$$\hbar \frac{\partial |\psi|}{\partial t} = \frac{1}{2m} \left[-\hbar^2 \left(2\nabla \theta \nabla |\psi| + i\nabla^2 \theta |\psi| - \left(\nabla \theta \right)^2 |\psi| \right) + 2\hbar q A \nabla |\psi| + \hbar q |\psi| \nabla A \right]$$

Probability current

Imaginary part:

$$\hbar \frac{\partial |\psi|}{\partial t} = \frac{1}{2m} \left[-\hbar^2 \left(2\nabla \theta \nabla |\psi| + i\nabla^2 \theta |\psi| - \left(\nabla \theta \right)^2 |\psi| \right) + 2\hbar q A \nabla |\psi| + \hbar q |\psi| \nabla A \right]$$

Multiply by $|\psi|$ and rearrange

$$\frac{\partial}{\partial t} |\psi|^2 + \nabla \cdot \left[\frac{\hbar}{m} |\psi|^2 \left(\nabla \theta - \frac{q}{\hbar} \vec{A}\right)\right] = 0$$

This is a continuity equation for probability

$$\frac{\partial P}{\partial t} + \nabla \cdot \vec{S} = 0$$

The probability current:

$$\vec{S} = \frac{\hbar}{m} |\psi|^2 \left(\nabla \theta - \frac{q}{\hbar} \vec{A} \right)$$

Probability current / supercurrent

The probability current:
$$\vec{S} = \frac{\hbar}{m} |\psi|^2 \left(\nabla \theta - \frac{q}{\hbar} \vec{A} \right)$$

This result holds for all charged particles in a magnetic field.

In superconductivity the particles are Cooper pairs q = -2e, $m = 2m_e$, $|\psi|^2 = n_{cp}$.

All superconducting electrons are in the same state so

$$\vec{j} = -2en_{cp}\vec{S}$$
$$\vec{j} = \frac{-e\hbar n_{cp}}{I} \left(\nabla \theta + \frac{2e}{I}\vec{A}\right)$$

$$\vec{j} = \frac{-e\hbar n_{cp}}{m_e} \left(\nabla \theta + \frac{2e}{\hbar}\vec{A}\right)$$

London gauge $\nabla \theta = 0$

$$\vec{j} = \frac{-2n_{cp}e^2}{m_e}\vec{A} = \frac{-n_se^2}{m_e}\vec{A}$$
 $n_s = 2n_{cp}$

1st London equation

$$\vec{j} = \frac{-n_s e^2}{m_e} \vec{A}$$

 $\frac{d\vec{j}}{dt} = \frac{-n_s e^2}{m_e} \frac{d\vec{A}}{dt} = \frac{n_s e^2}{m_e} \vec{E} \qquad \qquad \frac{d\vec{A}}{dt} = -\vec{E}$

First London equation:

$$\frac{d\vec{j}}{dt} = \frac{n_s e^2}{m_e} \vec{E}$$

Classical derivation:
$$-e\vec{E} = m\frac{d\vec{v}}{dt} = -\frac{m}{n_s e}\frac{d\vec{j}}{dt}$$

 $\frac{d\vec{j}}{dt} = \frac{n_s e^2}{m_e}\vec{E}$

Heinz & Fritz

2nd London equation

$$\vec{j} = \frac{-n_s e^2}{m_e} \vec{A}$$

$$\nabla \times \vec{j} = \frac{-n_s e^2}{m_e} \nabla \times \vec{A}$$

Second London equation:

$$\nabla \times \vec{j} = \frac{-n_s e^2}{m_e} \vec{B}$$

Meissner effect

Combine second London equation with Ampere's law

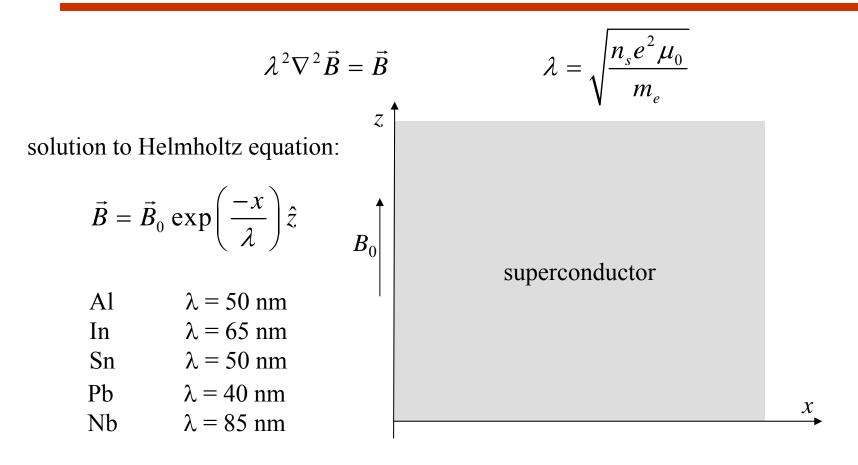
$$\nabla \times \vec{j} = \frac{-n_s e^2}{m_e} \vec{B} \qquad \nabla \times \vec{B} = \mu_0 \vec{j}$$
$$\nabla \times \nabla \times \vec{B} = \frac{-n_s e^2 \mu_0}{m_e} \vec{B}$$
$$\nabla \times \nabla \times \vec{B} = \nabla \left(\nabla \cdot \vec{B}\right) - \nabla^2 \vec{B}$$

Helmholtz equation: $\lambda^2 \nabla^2 \vec{B} = \vec{B}$

London penetration depth:

$$\lambda = \sqrt{\frac{n_s e^2 \mu_0}{m_e}}$$

Meissner effect



$$\nabla \times \vec{B} = \mu_0 \vec{j}$$
 $\vec{j} = \frac{\vec{B}_0}{\mu_0 \lambda} \exp\left(\frac{-x}{\lambda}\right) \hat{y}$

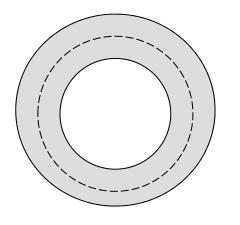
Flux quantization

$$\vec{j} = \frac{-e\hbar n_{cp}}{m_e} \left(\nabla \theta + \frac{2e}{\hbar}\vec{A}\right)$$

For a ring much thicker than the penetration depth, j = 0 along the dotted path.

$$0 = \left(\nabla \theta + \frac{2e}{\hbar}\vec{A}\right)$$

Integrate once along the dotted path.

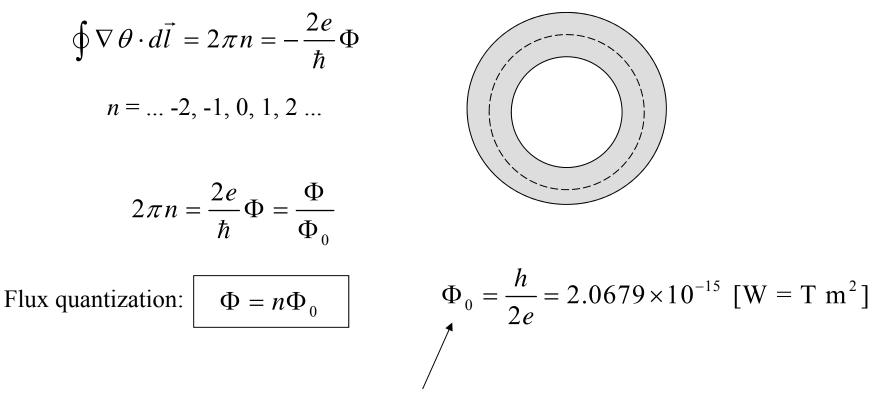


$$\oint \nabla \theta \cdot d\vec{l} = -\frac{2e}{\hbar} \oint \vec{A} \cdot d\vec{l} = -\frac{2e}{\hbar} \int_{S} \nabla \times \vec{A} \cdot d\vec{s} = -\frac{2e}{\hbar} \int_{S} \vec{B} \cdot d\vec{s} = -\frac{2e}{\hbar} \int_{S} \vec{B} \cdot d\vec{s}$$

magnetic flux

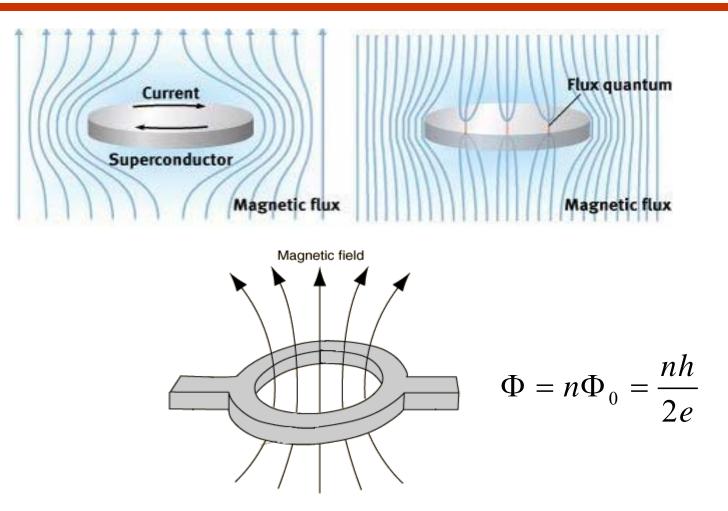
Stokes' theorem

Flux quantization



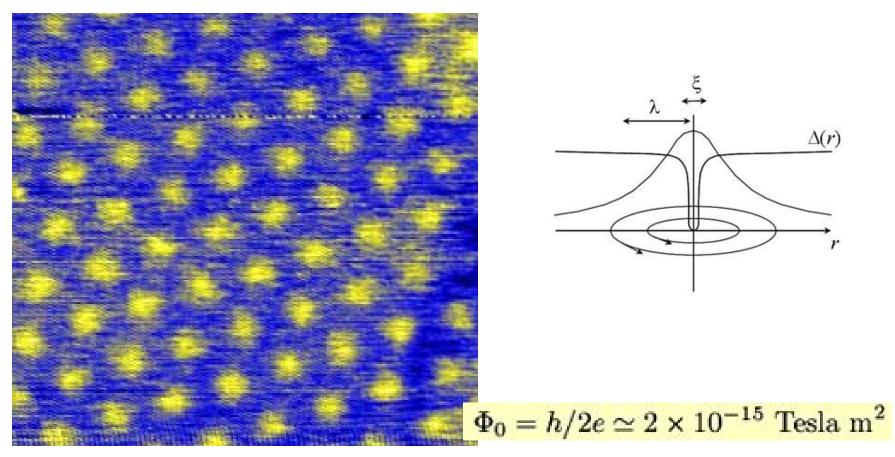
Superconducting flux quantum

Flux quantization



Flux is quantized through a superconducting ring.

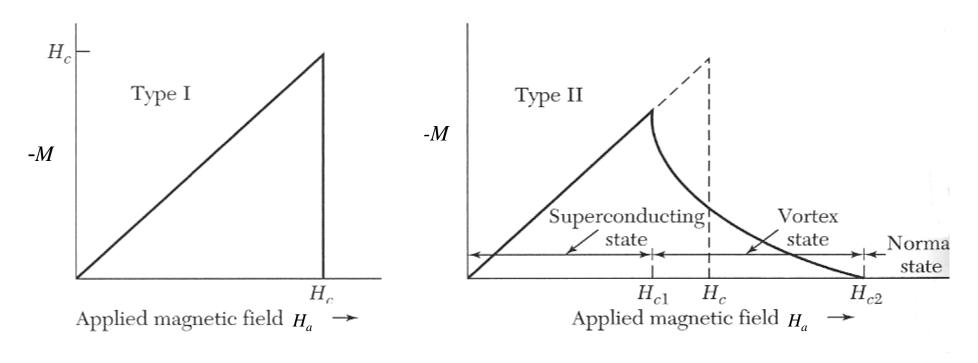
Vortices in Superconductors



STS image of the vortex lattice in NbSe₂. (630 nm x 500 nm, B = .4 Tesla, T = 4 K)

 $http://www.insp.upmc.fr/axe1/Dispositifs\%20 quantiques/AxeI2_more/VORTICES/vortexHD.htm$

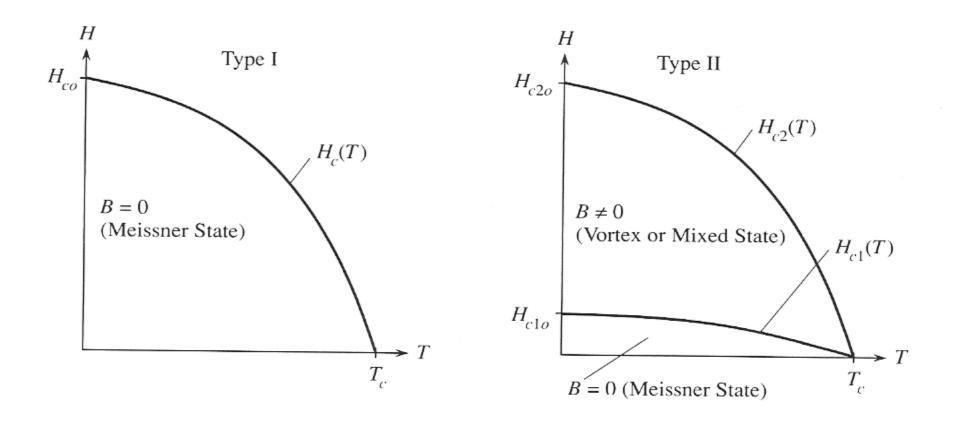
Type I and Type II



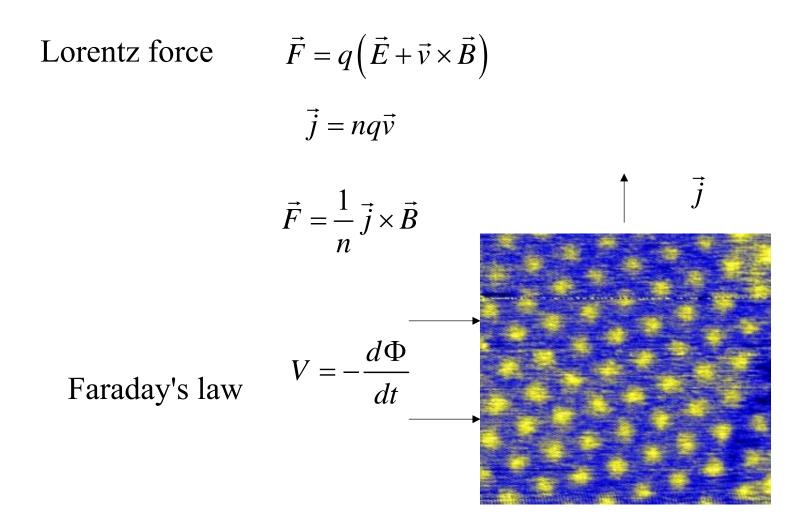
 $\vec{B} = \mu_0 \left(\vec{H} + \vec{M} \right)$

Superconductors are perfect diamagnets at low fields. B=0 inside a bulk superconductor.

Type I and Type II

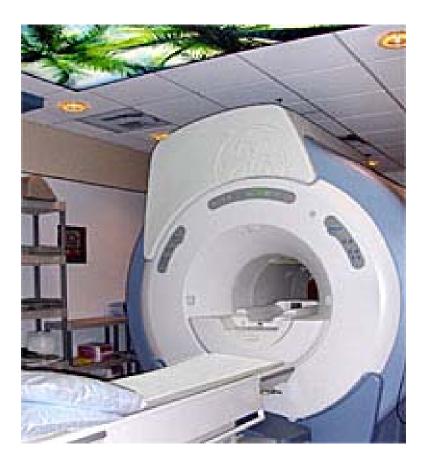


Vortices in Superconductors



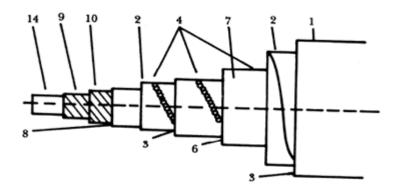
Defects are used to pin the vortices

Superconducting Magnets



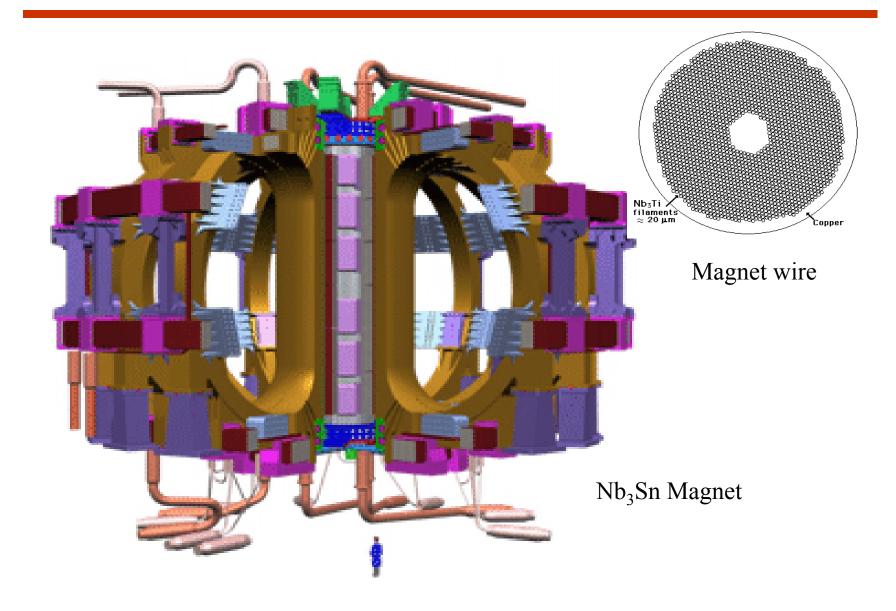
Whole body MRI

Magnets and cables

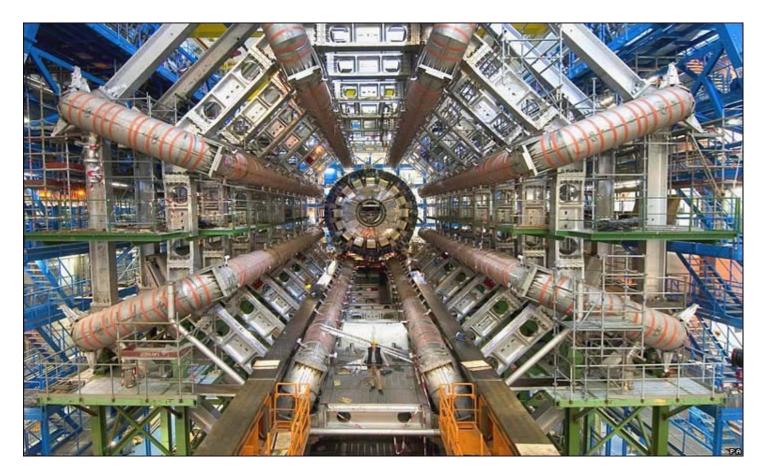


Maglev trains

ITER

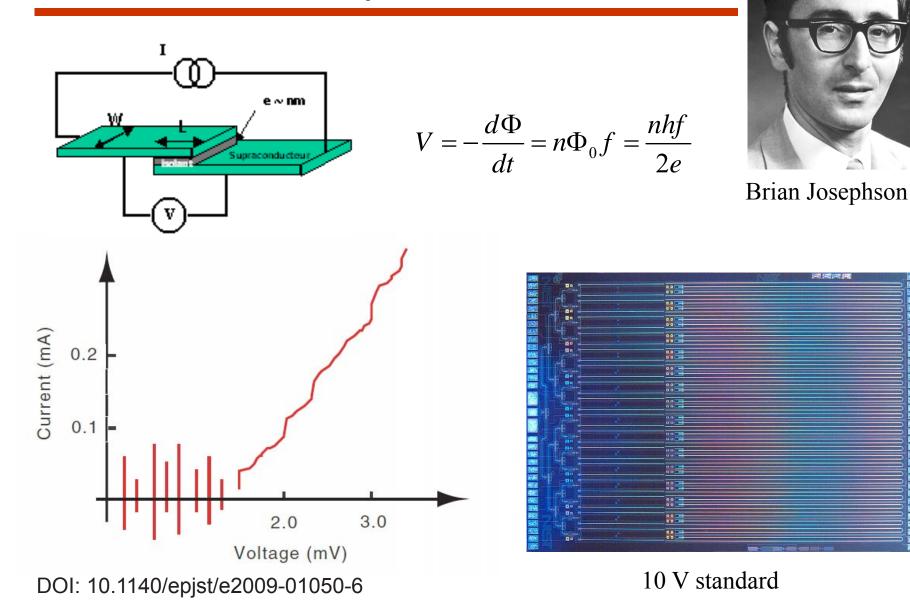


Superconducting magnets



Largest superconducting magnet, CERN 21000 Amps

ac - Josephson effect



http://www.nist.gov/pml/history-volt/superconductivity_2000s.cfm