Magnetism

Mean field theory

Ferromagnetism

Material Curie temp. (K)						
Co	1388					
Fe	1043					
FeOFe ₂ O ₃	858					
NiOFe ₂ O ₃	858					
$CuOFe_2O_3$	728					
MgOFe ₂ O ₃	713					
MnBi	630					
Ni	627					
MnSb	587					
MnOFe ₂ O ₃	573					
$Y_3Fe_5O_{12}$	560					
CrO ₂	386					
MnAs	318					
Gd	292					
Dy	88					
EuO	69					
$Nd_2Fe_{14}B$	353					
Sm ₂ Co ₁₇	700					

$$M_{s} = \frac{N}{2V} g \mu_{B}$$

$$T_c = \frac{z}{4k_B}J$$

Electrical insulator $M_s = 10 M_s$ (Fe) rare earth magnets

Curie - Weiss law

$$M = \frac{1}{2} g \mu_B \frac{N}{V} \tanh\left(\frac{g \mu_B \left(B_{MF} + B_a\right)}{2k_B T}\right)$$

$$\vec{B}_{MF} = \frac{V}{Ng^2 \mu_B^2} z J \vec{M}$$

Above T_c we can expand the hyperbolic tangent

 $tanh(x) \approx x$ for $x \ll 1$

$$M \approx \frac{1}{4} g^2 \mu_B^2 \frac{N}{V k_B T} \left(\frac{V}{N g^2 \mu_B^2} z J M + B_a \right)$$

Solve for *M*

$$M \approx \frac{g^2 \mu_B^2 N}{4V k_B} \frac{B_a}{T - T_c} \qquad T_c = \frac{z}{4k_B} J$$

Curie Weiss Law $\chi = \frac{dM}{dH} \approx \frac{C}{T - T_c}$

Critical fluctuations near T_c

Ferromagnets are paramagnetic above T_c

Critical fluctuations near T_c .

Magnetization of a Magnetite Single Crystal Near the Curie Point*

D. O. Smith[†]

Laboratory for Insulation Research, Massachusetts, Institute of Technology, Cambridge, Massachusetts (Received January 20, 1956)

FIG. 9. M_{a}/M_{0} vs T in the [111] direction near the Curie point for single-crystal magnetite.

Magnetic ordering

Ferrimagnets

Magnetite Fe₃O₄ (Magneteisen) Ferrites MO·Fe₂O₃

M = Fe, Zn, Cd, Ni, Cu, Co, Mg

 $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$

Two sublattices A and B.

Spinel crystal structure XY₂O₄

8 tetrahedral sites A (surrounded by 4 O) $5\mu_B$ \uparrow

16 octahedral sites B (surrounded by 6 O) $9\mu_B \downarrow$

per unit cell

 $MgAl_2O_4$

Ferrimagnets

Magnetite Fe₃O₄

Ferrites MO[·]Fe₂O₃

M = Fe, Zn, Cd, Ni, Cu, Co, Mg

 $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$

Exchange integrals J_{AA} , J_{AB} , and J_{BB} are all negative (antiparallel preferred)

 $|J_{AB}| > |J_{AA}|, |J_{BB}|$

↑ + ↑ + ↑ + ↑ + ↑ + Ferrimagnetism

gauss = 10^{-4} T oersted = $10^{-4}/4\pi \times 10^{-7}$ A/m

Table 33.3 SELECTED FERRIMAGNETS, WITH CRITICAL TEMPERATURES *T_c* AND SATURATION MAGNETIZATION *M*₀

MATERIAL	T_{c} (K)	$M_0 (\text{gauss})^a$
Fe ₃ O ₄ (magnetite)	858	510
CoFe ₂ O ₄	793	475
NiFe ₂ O ₄	858	300
CuFe ₂ O ₄	728	160
$MnFe_2O_4$	573	560
$Y_3Fe_5O_{12}$ (YIG)	560	195

^{*a*} At T = 0(K).

Source: F. Keffer, Handbuch der Physik, vol. 18, pt. 2, Springer, New York, 1966.

Kittel

D. Gignoux, magnetic properties of Metallic systems Antiferromagnetism

```
Negative exchange energy J_{AB} < 0.

\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow
```

At low temperatures, below the Neel temperature T_N , the spins are aligned antiparallel and the macroscopic magnetization is zero.

Spin ordering can be observed by neutron scattering.

At high temperature antiferromagnets become paramagnetic. The macroscopic magnetization is zero and the spins are disordered in zero field.

$$\chi = \mu_0 \frac{\vec{M}_A + \vec{M}_B}{\vec{B}_a} = \frac{C}{T + \Theta} \qquad \text{Curie-Weiss} \text{ temperature}$$

Average spontaneous magnetization is zero at all temperatures.

Substance	Paramagnetic ion lattice	Transition temperature, T_N , in K	Curie-Weiss θ , in K	$rac{ heta}{T_N}$	$rac{\chi(0)}{\chi(T_N)}$
MnO	fee	116	610	5.3	23
MnS	fee	160	528	3.3	0.82
MnTe	hex. layer	307	690	2.25	
MnF_2	bc tetr.	67	82	1.24	0.76
FeF_2	bc tetr.	79	117	1.48	0.72
$\tilde{\text{FeCl}_2}$	hex. layer	24	48	2.0	< 0.2
FeO	fee	198	570	2.9	0.8
CoCl_2	hex. layer	25	38.1	1.53	
CoO	fcc	291	330	1.14	
$NiCl_2$	hex. layer	50	68.2	1.37	
NiO	fcc	525	~2000	~4	
Cr	bec	308			
	Paramagnetism	Ferromagnetism	Antiferromagnetism		
	Susceptibility χ	χ	χ		
		Complex behavior		<u>-</u> T	from K
	$\chi = \frac{C}{m}$	$\chi = \frac{c}{C}$	$\chi = \frac{C}{C}$	_	
	Curie law	$\begin{array}{c} T - T_c \\ \text{Curie-Weiss law} \\ (T > T_c) \end{array}$	$(T > T_N)$		

Table 2 Antiferromagnetic crystals \uparrow \downarrow </t

Hard magnets: permanent magnets, motors, generators, microphones

Soft magnets: transformers

Magnetic recording

Magnetic domains (weisssche Bezirke)

Magnetic energy density

$$\frac{B^2}{2\mu_0}$$

Costs energy to introduce domain walls where spin up regions are adjacent to spin down regions.

Fig. 12.5. Photographs showing reversible domain wall motion in a 50 μ m whisker from (a) to (b) to (c), with an irreversible jump from (c) to (d). {R. W. de Blois and C. D. Graham, J. Appl. Phys., **29**, 931 (1958)}.

Ferromagnetic domains

Weak fields: favorable domains expand Strong fields: domains rotate to align with field

Irreproducible jump between c and d.

Magnetizing a magnet

Weak fields: favorable domains expand Strong fields: domains rotate to align with field

Hysteresis

Area of the loop is proportional to energy dissipated in traversing the loop.

Anisotropy energy

(a)

Spin-orbit coupling couples the shape of the wavefunction to the spin. The exchange energy depends on the overlap of the wavefunctions and thus on spin direction.

Bloch wall

Bloch wall

Anisotropy energy depends on the number of spins pointing in the hard direction

Soft magnetic materials

$$B = \mu_0 \left(H + M \right)$$

$$M = \chi H$$

 $\mu_r = 1 + \chi$

Small 10 - 100 nm particles have single domains.

Elongated particles have the magnetization along the long \underline{M}

Single domains are used for magnetic recording. Long crystals can be magnetized in either of the two directions along the long axis.

Shape anisotropy.

Hard magnets

Grains too small to contain Bloch walls must be flipped entirely by the field. Alnico: 8-12% Al, 15-26% Ni, 5-24% Co, up to 6% Cu, up to 1% Ti, rest is Fe

Hard magnetic materials

ferrites can also be hard magnets

Defects are introduced to pin the Bloch walls in a hard magnet.

-B

Applications of hard magnets

Motors, generators, speakers, microphone

Superparamagnetism

MnFe₂O₄

Fe₃O₄-Au

22-6 nm

0 nm

7.6 ± 0.9 nm

Below the Curie temperature the thermal energy changes the direction of magnetization of the entire crystallites.

Composite magnets

Injection molded magnets are a composite of various types of resin and magnetic powders

Flexible magnets are made by embedding magnetic particles in vinyl.

Powers deposited on tapes for magnetic storage.

Magnetic tapes are much cheaper per GB than hard disks.

magnetic recording

Giant magnetoresistance

GMR sensors in read-heads for hard-disk drives

Shipment of GMR-read-heads (1997-2007): 5 billion (10⁹)

Peter Gruenberg Nobel Lecture 2007: From Spinwaves to Giant Magnetoresistance (GMR) and Beyond

Magnetic force microscope

