Electrons in a magnetic field

Landau levels

The global density of states in *k*-space does not change

In 2-D, the k-volume per k state is:
$$\left(\frac{2\pi}{L}\right)^2$$

	2-D Schrödinger equation	3-D Schrödinger equation $i\hbar \frac{d\psi}{dt} = \frac{1}{2m} \left(-i\hbar \nabla - e \vec{A}\right)^2 \psi$	
	$i\hbar \frac{d\psi}{dt} = \frac{1}{2m} \left(-i\hbar \nabla - e \vec{A} \right)^2 \psi$		
Figenfunction solutions	$\boldsymbol{\psi} = g_{\boldsymbol{v}}(\boldsymbol{x}) \exp\left(ik_{\boldsymbol{y}}\boldsymbol{y}\right)$	$\overline{\psi = g_{\nu}(x) \exp(ik_{\nu}y) \exp(ik_{z}z)}$	
Eigenanction solutions	$g_{\nu}(x)$ is a harmonic oscillator wavefunction	$g_{\nu}(x)$ is a harmonic oscillator wavefun	
Energy eigenvalues	$E = \hbar \omega_c \left(v + \frac{1}{2} \right) \mathbf{J}$ $v = 0, 1, 2, \cdots \qquad \omega_c = \frac{ eB_z }{m}$	$E = \frac{\hbar^2 k_z^2}{2m} + \hbar \omega_c \left(v + \frac{1}{2} \right) \mathbf{J}$ $v = 0, 1, 2, \cdots \qquad \omega_c = \frac{ eB_z }{m}$	
Density of states	$D(E) = \frac{m\omega_c}{2\pi\hbar} \sum_{\nu=0}^{\infty} \delta\left(E - \hbar\omega_c \left(\nu + \frac{1}{2}\right) - \frac{g\mu_B}{2}B\right) + \delta\left(E - \hbar\omega_c \left(\nu + \frac{1}{2}\right) + \frac{g\mu_B}{2}B\right) - J^{-1}m^{-2}$	$D(E) = \frac{(2m)^{3/2} \omega_c}{4\pi^2 \hbar^2} \sum_{\nu=0}^{\infty} \frac{H\left(E - \hbar \omega_c \left(\nu + \frac{1}{2}\right)\right)}{\sqrt{E - \hbar \omega_c \left(\nu + \frac{1}{2}\right)}}$ $D(E) = \frac{10^{45} \text{ J}^{-1} \text{ m}^{-3}}{4}$ $D(E) = \frac{10^{45} \text{ m}^{-3}}{4}$ $D(E) = \frac{10^{4} \text{ m}^{-3}}{4}$ $D(E) = \frac{10^{4} \text{ m}^{-3}}{4}$ $D(E) =$	
	$E_{F} = \hbar \omega_{e} \left(\operatorname{Int} \left(\frac{\pi \hbar n}{m \omega_{e}} \right) + \frac{1}{2} \right)$	0.078575	
	0.0050		

ization of the Schrödinger equation for free electrons a magnetic field in 2 and 3 dimensions.

Energy spectral density 2d

At T = 0

analog to the Planck radiation law

Fermi energy 2d

When there is only one Landau level, the Fermi energy rises linearly with field.

Periodic in 1/B

Large field limit
$$\longrightarrow E_F = \frac{\hbar\omega_c}{2} = \frac{\hbar eB}{2m}$$

Internal energy 2d

Magnetization 2d

At T = 0

Heterostructure

pn junction formed from two semiconductors with different band gaps

MODFET (HEMT)

Modulation doped field effect transistor (MODFET) High electron mobility transistor (HEMT)

The magnetic field can be at an angle to the 2DEG. The Landau splitting experiences the component perpendicular to the plane. The Zeeman splitting experiences the full field.

Technische Universität Graz

MOSFETs

At room temperature, phonon energies are much less than the Fermi energy. The energy of electrons hardly changes as they scatter from phonons. Electrons scatter from a point close to the Fermi surface to another point close to the Fermi surface.

Changing the magnetic field changes the number of states at the Fermi energy.

There are oscillations in the electrical conductivity as a function of magnetic field.

Shubnikov-De Haas oscillations

Review of the Hall effect: Diffusive transport

Review of the Hall effect

$$\vec{F} = m\vec{a} = -e\vec{E} = m\frac{\vec{v}_d}{\tau_{\rm sc}} \quad \text{diffusive regime}$$
$$\vec{F} = -e\left(\vec{E} + \vec{v} \times \vec{B}\right) = m\frac{\vec{v}_d}{\tau_{\rm sc}}$$

If *B* is in the *z*-direction, and *E* is in the *x*- direction, the three components of the force are

$$-e\left(E_{x} + v_{dy}B_{z}\right) = m\frac{v_{dx}}{\tau_{sc}}$$

$$ev_{dx}B_{z} = m\frac{v_{dy}}{\tau_{sc}} \qquad \Longrightarrow \qquad \tan \theta_{H} = -\frac{eB_{z}}{m}\tau_{sc}$$

$$0 = m\frac{v_{dz}}{\tau_{sc}} \qquad \qquad \text{Hall angle}$$

7% C:\Program Files\Cornell\SSS\winbin\drude.exe						
	quit display:	large con	figure	presets help		
🔟 show graph	show average	run		show graph	show average	
time (ps) 89.0		initializ	e			
		E_x (10^4 V/m):	0.0			
• 0		E_y (10^4 V/m):	0.0			
° 8	. 8	B_z (T):	0.0		•	
80 0 0 80 0 0	૾ૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	tau (ps):	1.00e+00		•	
۹ گ	\$ \$	temperature (K):	300		•	
~	Ø	omega (10^12/sec):	0	•		
		phase (radians):	0.0			
		speed	2			
position: (4.12,	2.06) 10^-6 m			velocity: (-28.4, 40.0)) 10^4 m/s	

If no forces are applied, the electrons diffuse.

The average velocity moves against an electric field.

In just a magnetic field, the average velocity is zero.

In an electric and magnetic field, the electrons move in a straight line at the Hall angle.

The drift velocity decreases as the B field increases.

The Hall Effect (diffusive regime)

If $v_{d,y} = 0$,

 $E_{y} = v_{d,x}B_{z} = V_{H}/W = R_{H}j_{x}B_{z} \qquad V_{H} = \text{Hall voltage, } R_{H} = \text{Hall Constant}$ $v_{d,x} = -j_{x}/ne$ $\boxed{R_{H} = E_{y}/j_{x}B_{z} = -1/ne}$

The Hall Effect (diffusive regime)

$$R_H = E_y / j_x B_z = -1/ne$$

multiply both sides by B_z

In 2D, *j* has units of A/m and *n* has units of $1/m^2$.

$$\rho_{xy} = \frac{E_y}{j_x} = \frac{-B_z}{ne}$$

In 3D, *j* has units of A/m³ and *n* has units of $1/m^3$.

The Hall resistivity is proportional to the magnetic field.