Quasiparticles

Phonons

 N_{atom} atoms in crystal $3N_{\text{atom}}$ normal modes p atoms in the basis N_{atom}/p unit cells N_{atom}/p translational symmetries N_{atom}/p k-vectors 3p modes for every k vector 3 acoustic branches and 3p-3 optical branches

Normal Modes and Phonons

At finite temperatures, the atoms in a crystal vibrate. In the simulation below, the atoms move randomly around their equilibrium positions.

Normal modes are eigenfunctions of T

$$u_{lmn}^{x} = u_{\vec{k}}^{x} \exp\left(i\left(l\vec{k}\cdot\vec{a}_{1}+m\vec{k}\cdot\vec{a}_{2}+n\vec{k}\cdot\vec{a}_{3}-\omega t\right)\right)$$
$$u_{lmn}^{y} = u_{\vec{k}}^{y} \exp\left(i\left(l\vec{k}\cdot\vec{a}_{1}+m\vec{k}\cdot\vec{a}_{2}+n\vec{k}\cdot\vec{a}_{3}-\omega t\right)\right)$$
$$u_{lmn}^{z} = u_{\vec{k}}^{z} \exp\left(i\left(l\vec{k}\cdot\vec{a}_{1}+m\vec{k}\cdot\vec{a}_{2}+n\vec{k}\cdot\vec{a}_{3}-\omega t\right)\right)$$

These are eigenfunctions of T.

$$T_{pqr}u_{lmn}^{x} = u_{\vec{k}}^{x}\exp\left(i\left(l\vec{k}\cdot(\vec{a}_{1}+p\vec{a}_{1})+m\vec{k}\cdot(\vec{a}_{2}+q\vec{a}_{2})+n\vec{k}\cdot(\vec{a}_{3}+r\vec{a}_{3})-\omega t\right)\right)$$
$$= \exp\left(i\left(lp\vec{k}\cdot\vec{a}_{1}+qm\vec{k}\cdot\vec{a}_{2}+rn\vec{k}\cdot\vec{a}_{3}\right)\right)u_{\vec{k}}^{x}\exp\left(i\left(l\vec{k}\cdot\vec{a}_{1}+m\vec{k}\cdot\vec{a}_{2}+n\vec{k}\cdot\vec{a}_{3}-\omega t\right)\right)$$
$$= \exp\left(i\left(lp\vec{k}\cdot\vec{a}_{1}+qm\vec{k}\cdot\vec{a}_{2}+rn\vec{k}\cdot\vec{a}_{3}\right)\right)u_{lmn}^{x}$$

fcc

$$\begin{split} m \frac{d^{2}u_{lmn}^{x}}{dt^{2}} &= \frac{C}{2} \Big[\Big(u_{l+1mn}^{x} - u_{lmn}^{x} \Big) + \Big(u_{l-1mn}^{x} - u_{lmn}^{x} \Big) + \Big(u_{lm+1n}^{x} - u_{lmn}^{x} \Big) + \Big(u_{lm-1n}^{x} - u_{lmn}^{x} \Big) \\ &+ \Big(u_{l+1mn-1}^{x} - u_{lmn}^{x} \Big) + \Big(u_{l-1mn+1}^{x} - u_{lmn}^{x} \Big) + \Big(u_{lm+1n-1}^{x} - u_{lmn}^{x} \Big) + \Big(u_{lm-1n+1}^{x} - u_{lmn}^{x} \Big) \\ &+ \Big(u_{l+1mn}^{y} - u_{lmn}^{y} \Big) + \Big(u_{l-1mn}^{y} - u_{lmn}^{y} \Big) - \Big(u_{lm+1n-1}^{y} - u_{lmn}^{y} \Big) - \Big(u_{lm-1n+1}^{y} - u_{lmn}^{y} \Big) \\ &+ \Big(u_{lm+1n}^{z} - u_{lmn}^{z} \Big) + \Big(u_{lm-1n}^{z} - u_{lmn}^{z} \Big) - \Big(u_{l+1mn-1}^{z} - u_{lmn}^{z} \Big) - \Big(u_{l-1mn+1}^{z} - u_{lmn}^{z} \Big) \Big] \end{split}$$

and similar expressions for the y and z motion

fcc

Substitute the eigenfunctions of *T* into Newton's laws.

$$u_{lmn}^{x} = u_{\vec{k}}^{x} \exp\left(i\left(l\vec{k}\cdot\vec{a}_{1}+m\vec{k}\cdot\vec{a}_{2}+n\vec{k}\cdot\vec{a}_{3}\right)\right) = u_{\vec{k}}^{x} \exp\left(i\left(\frac{(l+m)k_{x}a}{2} + \frac{(l+n)k_{y}a}{2} + \frac{(m+n)k_{z}a}{2}\right)\right).$$

$$4 - \cos\left(\frac{k_{x}a}{2} + \frac{k_{y}a}{2}\right) - \cos\left(\frac{k_{x}a}{2} - \frac{k_{y}a}{2}\right) - \cos\left(\frac{k_{y}a}{2} -$$

http://lamp.tu-graz.ac.at/~hadley/ss1/phonons/fcc/fcc.html

fcc phonons

3N degrees of freedom

Fig. 1. Au. Phonon dispersion relations in the principal symmetry directions according to [73Ly1]. The solid curves represent both the fourth neighbour general force model (M1) and the fifth neighbour axially symmetric model (M2) of Table 3 Au. The dotted line in the Σ direction is corresponding to the velocity of sound appropriate to the [0 $\zeta\zeta$] T₁ branch.

Materials with the same crystal structure will have similar phonon dispersion relations

Fig. 1. Au. Phonon dispersion relations in the principal symmetry directions according to [73Ly1]. The solid curves represent both the fourth neighbour general force model (M1) and the fifth neighbour axially symmetric model (M2) of Table 3 Au. The dotted line in the Σ direction is corresponding to the velocity of sound appropriate to the [0 $\zeta\zeta$] T₁ branch.

fcc phonons

x - Richtung:

NaCl

2 atoms/unit cell

6 equations

3 acoustic and3 optical branches

$$M_1 \frac{d^2 u_{nml}^x}{dt^2} = C \left(-2u_{nml}^x + v_{(n-1)m(l-1)}^x + v_{n(m-1)l}^x \right)$$

$$M_2 \frac{d^2 v_{nml}^x}{dt^2} = C \left(-2v_{nml}^x + u_{(n+1)m(l+1)}^x + u_{n(m+1)l}^x \right)$$

y - Richtung:

$$M_1 \frac{d^2 u_{nml}^y}{dt^2} = C \left(-2u_{nml}^y + v_{(n-1)(m-1)l}^y + v_{nm(l-1)}^y \right)$$

$$M_2 \frac{d^2 v_{nml}^y}{dt^2} = C \left(-2v_{nml}^y + u_{(n+1)(m+1)l}^y + u_{nm(l+1)}^y \right)$$

z - Richtung:

$$M_1 \frac{d^2 u_{nml}^z}{dt^2} = C \left(-2u_{nml}^z + v_{n(m-1)(l-1)}^z + v_{(n-1)ml}^z \right)$$

$$M_2 \frac{d^2 v_{nml}^z}{dt^2} = C \left(-2v_{nml}^z + u_{n(m+1)(l+1)}^z + u_{(n+1)ml}^z \right)$$

$$u_{nml}^{x} = u_{\vec{k}}^{x} \exp\left(i\left(\vec{k}\cdot\vec{a}_{1}+\vec{k}\cdot\vec{a}_{2}+\vec{k}\cdot\vec{a}_{3}-\omega t\right)\right) \qquad v_{nml}^{x} = v_{\vec{k}}^{x} \exp\left(i\left(\vec{k}\cdot\vec{a}_{1}+\vec{k}\cdot\vec{a}_{2}+\vec{k}\cdot\vec{a}_{3}-\omega t\right)\right)$$

Two atoms per primitive unit cell

NaCl

GaAs

Hannes Brandner

http://lamp.tu-graz.ac.at/~hadley/ss1/phonons/phonontable.html

Phonon quasiparticle lifetime

Phonons are the eigenstates of the linearized equations, not the full equations.

Phonons have a finite lifetime that can be calculated by Fermi's golden rule.

$$\Gamma_{i \to f} = \frac{2\pi}{\hbar} \left| \left\langle f \left| H_{ph-ph} \right| i \right\rangle \right|^2 \delta \left(E_f - E_i \right)$$

Occupation is determined by a master equation (not the Bose-Einstein function).

$$\begin{bmatrix} \frac{dP_0}{dt} \\ \frac{dP_1}{dt} \\ \vdots \\ \frac{dP_N}{dt} \end{bmatrix} = \begin{bmatrix} -\sum_{i\neq 0} \Gamma_{0\rightarrow i} & \Gamma_{1\rightarrow 0} & \cdots & \Gamma_{N\rightarrow 0} \\ \Gamma_{0\rightarrow 1} & -\sum_{i\neq 1} \Gamma_{1\rightarrow i} & \cdots & \Gamma_{N\rightarrow 1} \\ \vdots & \vdots & \ddots & \vdots \\ \Gamma_{0\rightarrow N} & \Gamma_{1\rightarrow N} & \cdots & -\sum_{i\neq N} \Gamma_{N\rightarrow i} \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ \vdots \\ P_N \end{bmatrix}$$

Acoustic attenuation

The amplitude of a monocromatic sound wave decreases as the wave propagates through the crystal as the phonon quasiparticles decay into phonons with other frequencies and directions.

Raman Spectroscopy

Inelastic light scattering

$$\omega = \omega' \pm \Omega$$

$$\vec{k} = \vec{k}' \pm \vec{K} \pm \vec{G}$$

Raman Spectroscopy

$$\chi = \chi_0 + \frac{\partial \chi}{\partial X} X \cos(\Omega t)$$
$$\vec{P} = \varepsilon_0 \chi \vec{E} \cos(\omega t) + \varepsilon_0 \frac{\partial \chi}{\partial X} X \cos(\Omega t) \vec{E} \cos(\omega t)$$

There are components of the polarization that oscillate at $\omega \pm \Omega$.

Raman Spectroscopy

Vacancy-hydrogen defects in silicon studied by Raman spectroscopy

Raman spectroscopy

FIG. 1. Raman spectra measured at room temperature on the H_2 -implanted sample: (a) as-implanted sample, (b) after annealing at 400 °C for 2 min. Spectra are offset vertically for clarity.

Magnons

Magnons are excitations of the ordered ferromagnetic state

7

Longitudinal plasma waves

There is no magnetic component of the wave.

Plasma waves can be quantized like any other wave

Electron energy loss spectroscopy

Transverse optical plasma waves

Surface Plasmons

Waves in the electron density at the boundary of two materials.

Surface plasmons have a lower frequency that bulk plasmons. This confines them to the interface.

Surface Plasmons

Green and blue require different sized particles.

High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy

PHYSICAL REVIEW B 79, 041401 R 2009

Surface plasmons on nanoparticles are efficient at scattering light.

LETTERS

Organic plasmon-emitting diode

D.M. KOLLER^{1,2}, A. HOHENAU^{1,2}, H. DITLBACHER^{1,2}, N. GALLER^{1,2}, F. REIL^{1,2}, F.R. AUSSENEGG^{1,2}, A. LEITNER^{1,2}, E.J.W. LIST^{3,4} AND J.R. KRENN^{1,2*}

¹Institute of Physics, Karl-Franzens-University, A-8010 Graz, Austria

²Erwin Schrödinger Institute for Nanoscale Research, Karl-Franzens-University, A-8010 Graz, Austria

³Christian Doppler Laboratory for Advanced Functional Materials, Institute of Solid State Physics, Graz University of Technology, A-8010 Graz, Austria ⁴NanoTecCenter Weiz Forschungsgesellschaft mbH, A-8160 Weiz, Austria

*e-mail: joachim.krenn@uni-graz.at

Published online: 28 September 2008; doi:10.1038/nphoton.2008.200

Surface plasmons are hybrid modes of longitudinal electron oscillations and light fields at the interface of a metal and a dielectric^{1,2}. Driven by advances in nanofabrication, imaging and numerical methods^{3,4}, a wide range of plasmonic elements such as waveguides^{5,6}, Bragg mirrors⁷, beamsplitters⁸, optical modulators⁹ and surface plasmon detectors¹⁰ have recently been reported. For introducing dynamic functionality to plasmonics, the rapidly growing field of organic optoelectronics¹¹ holds strong promise due to its ease of fabrication and integration opportunities. Here, we introduce an electrically switchable

Surface plasmons are used for biosensors.

Plasmon filter

http://web.pdx.edu/~larosaa/Applied_Optics_464-564/Lecture_Notes_Posted/2010_Lecture-7_ SURFACE%20PLASMON%20POLARITONS%20AT%20%20METALINSULATOR%20INTERFACES/Lecture_on_the_Web_SURFAC E-PLASMONS-POLARITONS.pdf

Transverse optical phonons will couple to photons with the same ω and *k*.

Light Bragg reflects off the sound wave; sound Bragg reflects off the light wave.

The dispersion relation for light

The description of polaritons is already built into the dielectric function.

Ignore the loss term $i\gamma\omega$

$$\varepsilon(\omega) = \varepsilon(\infty) + \frac{\omega_0^2 \left(\varepsilon(0) - \varepsilon(\infty)\right)}{\omega_0^2 - \omega^2}$$

Use a common denominator

$$\varepsilon(\omega) = \frac{\varepsilon(\infty)(\omega_0^2 - \omega^2) + \omega_0^2(\varepsilon(0) - \varepsilon(\infty))}{\omega_0^2 - \omega^2}$$

Define $\omega_L \quad \omega_0^2 \varepsilon(0) = \varepsilon(\infty) \omega_L^2$

$$\varepsilon(\omega) = \varepsilon(\infty) \frac{\omega_L^2 - \omega^2}{\omega_0^2 - \omega^2}$$

$$\varepsilon(\infty)\frac{\omega_L^2-\omega^2}{\omega_0^2-\omega^2}\frac{\omega^2}{c^2}=k^2$$

There are two solutions for every k, one for the upper branch and one for the lower branch.

A gap exists in frequency.

Polaritons are the normal modes near the avoided crossing.

Polaritons allow us to study the properties of phonons using optical measurements

By looking at the reflectance in different crystal directions, you can determine the frequencies of the transverse optical phonons.

Polaritons and optical properties

Outline

and

Quantization Photons Electrons

Magnetic effects

Fermi surfaces Linear response Transport Crystal Physics Electron-electron

interactions Quasiparticles Structural phase

transitions Landau theory of second order phase transitions Print version

Advanced Solid State Physics

Optical properties of insulators and semiconductors

In an insulator, all charges are bound. By applying an electric field, the electrons and ions can be pulled out of their equilibrium positions. When this electric field is turned off, the charges oscillate as they return to their equilibrium positions. A simple model for an insulator can be constructed by describing the motion of the charge as a damped mass-spring system. The differential equation that describes the motion of a charge is,

$$m\,rac{d\,{}^{2}x}{dt^{2}}+b\,rac{dx}{dt}+kx=-qE$$

Rewriting above equation using $\omega_0 = \sqrt{\frac{k}{m}}$ and the damping constant $\gamma = \frac{b}{m}$ yields,

 $-rac{d^2x}{dt^2}+\gamma\,rac{dx}{dt}+\omega_0^2x=-rac{qE}{m}\,.$

If the electric field is pulsed on, the response of the charges is described by the impulse response function g(t). The impulse response function satisfies the equation,

$$rac{d^2g}{dt^2}+\gammarac{dg}{dt}+\omega_0^2g=-rac{q}{m}\,\delta(t).$$

Lectures Books Course notes TUG students Making presentations

Superconductivity Exam questions Appendices

The solution to this equation is zero before the electric field is pulsed on and at the time of the pulse the charges suddenly start oscillating with the frequency $\omega_1 = \sqrt{\omega_0^2 - \frac{\gamma^2}{4}}$. The amplitude of the oscillation decays exponentially to zero in a characteristic time $\frac{2}{\gamma}$.

$$g(t) = -\frac{q}{m\omega_1} \exp(-\frac{\gamma}{2} t) \sin(\omega_1 t).$$

Excitons

Bound state of an electron and a hole in a semiconductor or insulator

Mott-Wannier Excitons

Bound state of an electron and a hole in a semiconductor or insulator (like positronium)

Excitons

Gross & Marx

Excitons

See: C. D. Jeffries, Electron-Hole Condensation in Semiconductors, Science 189 p. 955 (1975).