
Landau Theory of a 
Fermi Liquid

Quasiparticles



Landau theory of a Fermi liquid 

The free electron model = 'Fermi gas' is very successful at describing metals but 
it is not clear why this is so since electron-electron interactions are completely 
ignored.

Landau first considered the "normal modes" of an interacting electron system. 
The low lying excitations he called quasiparticles. 

The quasiparticles have as many degrees of freedom as the electrons. They can 
be labeled by k. 

Quasiparticles can be have the same spin, charge, and k vectors as the electrons. 

It is not easy to calculate E(k). 

Concepts like the density of states refer to quasiparticles. 



The normal modes of a Wigner crystal would involve many electrons.

Wigner crystal 

At low electron densities, electrons moving in a uniform positive background 
should form a crystal.

Eugene Wigner



Landau theory of a Fermi liquid 

If there are no electron-electron interactions, electrons have an infinite lifetime 
and the probability that a state is occupied is given by the Fermi function. 

If there are interactions, quasiparticles have a finite lifetime. The lifetime can be 
calculated by Fermi's golden rule.

The occupation probability of a state depends on the occupation the other states. 
You solve for the probability distribution by solving a master equation. The 
occupation probability is not given by the Fermi function.
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Quasiparticles

Systems of many interacting particles are very difficult to solve. The first task 
is to determine the ground state. This is the state that the system enters at zero 
temperature. 

Next we consider the lowest energy excitations above the ground state by 
linearizing the equations of motion around the ground state. These are called 
the elementary excitations or quasiparticles. 

Phonons, magnons, plasmons, polaritons, and excitions are examples of 
quasiparticles.



Instabilities Fermi liquid 

Some metals cannot be described as a Fermi liquid. 
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Heavy Fermion CeCu2Si2

http://www.ipap.jp/jpsj/announcement/announce2007May.htm

Some metals cannot be described as a Fermi liquid. 



Cuprate superconductors

The unit cell of 
high-temperature 
cuprate 
superconductor 
BSCCO-2212 from Wikipedia



Iron based superconductors

from Wikipedia



Phonons

As usual, we start with the total Hamiltonian for a solid.

Fix the positions of the nuclei (Born - Oppenheimer approximation) and calculate 
the energy of the electrons (tight binding, DFT, etc).

Move the nuclei and recalculate until you find  nuclear positions that minimize the 
energy. Check with x-ray diffraction data.

Calculate how the energy increases as nuclei are pushed a small distance from the 
minimum energy position. This is similar to determining a bond potential like a 
Morse potential. 
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Phonons

In a crystal, the atoms are connected by nonlinear springs.

Phonons are the quasiparticles you get when you linearize this problem.



fcc phonons

3N degrees of freedom

The ground state is all of the atoms at their equilibrium positions.



phonon normal mode solutions

Newton's laws are a set of 3Natom coupled differential equations.  In a normal mode 
solution, all of the atoms move with the same frequency. The translational 
symmetry of the crystal requires that the normal mode solutions are eigenfunctions 
of the translation operator. The normal mode solutions are therefore

The components of the vector uk describe the displacements of the atoms of the 
basis away from their equilibrium positions. If there are p atoms in the basis, uk will 
have 3p components uk = (uAx

k, uAy
k, uAz

k, uBx
k, uBy

k, uBz
k, ...), where the superscripts 

label the atoms of the basis. 
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