
Charging effects 

The motion of electrons through a single quantum dot is correlated. 

quantum dot
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After screening, the next most simple approach to describing electron-
electron interactions are charging effects.
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Single electron transistor
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Single electron transistor
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The energy needed to add an infinitesimal charge dq to an island at voltage V(n) 
is V(n)dq. The energy needed to add a whole electron is: 

The potential of the island with n electrons on it: 
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Charging energy
The energy needed to remove a whole electron is: 
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A. Bezryadin et al. Appl. Phys. Lett.,  71, p. 1273. 

Jarillo-Herrero, et al., Nature 429, 389 (2004).



Coulomb  blockade suppressed by thermal and quantum fluctuations
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RC charging time of the capacitance:  RC

Thermal fluctuations 

2
2CRC e

  Charging faster than a quantum fluctuation  

2
2 8 kR e  

Resistance quantum  2 25.5 kh
e  

E t   Quantum fluctuations 

~



Charging energy E = e2/2C

extended state

Metal - insulator transition in 1-d arrays
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If the tunnel resistances between the crystals is > 25 k, the material 
will be an insulator at low temperature

Metal insulator transition

Strong coupling of metal particles results in a metal.
Weak coupling of metal particle results in an insulator.
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Disorder  => Favors insulating state 
Uniform tunnel barriers

Random tunnel barriers, some with resistances above the resistance quantum 

For bigger conducting regions, lower temperatures are needed to see insulating behavior.



Single-electron effects will be present in any molecular scale circuit
Usually considered undesirable and are avoided by keeping the 
resistance below the resistance quantum.

Single electron effects
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The Hubbard model is an approximate model used, especially in solid state physics, to 
describe the transition between conducting and insulating systems.  -Wikipedia

The Hubbard model
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http://nerdwisdom.com/tutorials/the-hubbard-model/

It is widely believed to be a good model for correlated electron systems including 
high temperature superconductors. The Hubbard model is solvable for a few electrons 
and a few sites but is extremely difficult to solve for many electrons on many sites. 

John Hubbard



Consider 2 electrons and two sites. If the electrons have the same spin:

The Hubbard model

,      or     ,   
They can't hop and the energy is zero.

If the electrons have opposite spin
,      or     ,      or     ,0     or     0,     

the states couple together.
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The Hubbard model
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States where electrons have opposite spin have lower energy (antiferromagnetic).



The Hubbard model



E = 2.56

E = -1.56

E = 0

E = 1

One eigenvalue 
is less than zero

The ground state of a half-filled band is antiferromagnetic.
The Hubbard model rapidly becomes intractable for more sites.

Eigenvectors


