

Institute of Solid State Physics

Review

Maxwell synthesis of electricity, magnetism and optics.

We determined the normal modes of the electromagnetic field. Each normal mode can be labeled by \vec{k} and polarization.

We quantized the normal modes and found they have quantized energies

$$\hbar\omega(j+\frac{1}{2}) \qquad j=0,1,2,3\cdots$$

We calculated the thermodynamic properties $u, s, f, c_v, ...$

Institute of Solid State Physics

Review II

The solutions to the wave equation in a periodic medium either have Bloch form

$$e^{i\vec{k}\cdot\vec{r}}u_{\vec{k}}(\vec{r})$$
 (band)

or the solutions are exponentially growing or decaying (bandgap).

Bloch theorem

Fourier series for a periodic function.

$$C(\vec{r}) = \sum_{\vec{G}} C_{\vec{G}} e^{i\vec{G}\cdot\vec{r}}$$

$$f_{\vec{k}}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}} \sum_{\vec{G}} C_{\vec{G}} e^{i\vec{G}\cdot\vec{r}} = e^{i\vec{k}\cdot\vec{r}} e^{i\vec{G}_{0}\cdot\vec{r}} e^{-i\vec{G}_{0}\cdot\vec{r}} \sum_{\vec{G}} C_{\vec{G}} e^{i\vec{G}\cdot\vec{r}} = e^{i\left(\vec{k}+\vec{G}_{0}\right)\cdot\vec{r}} \sum_{\vec{G}} C_{\vec{G}} e^{i\left(\vec{G}-\vec{G}_{0}\right)\cdot\vec{r}}$$

It is always possible to use a k in the first Brillouin zone.

Inverse opal photonic crystal

Figure 8: The photonic band structure for the lowest bands of an "inverse opal" structure: a face-centered cubic (fcc) lattice of close-packed air spheres in dielectric ($\varepsilon = 13$). (Inset shows fabricated structure from figure 9.) There is a complete photonic band gap (yellow) between the eighth and ninth bands. The wave vector varies across the irreducible Brillouin zone between the labelled high-symmetry points; see appendix B for a discussion of the Brillouin zone of an fcc lattice.

Empty lattice approximation

Empty lattice approximation

Plane wave method

$$c(\vec{r})^{2} \nabla^{2} A_{j} = \frac{d^{2} A_{j}}{dt^{2}}$$

$$c(\vec{r})^{2} = \sum_{\vec{G}} b_{\vec{G}} e^{i\vec{G}\cdot\vec{r}} \qquad A_{j} = \sum_{\vec{k}} A_{\vec{k}} e^{i\left(\vec{k}\cdot\vec{r}-\omega t\right)}$$

$$\sum_{\vec{G}} b_{\vec{G}} e^{i\vec{G}\cdot\vec{r}} \sum_{\vec{k}} \left(-\kappa^{2}\right) A_{\vec{k}} e^{i\left(\vec{\kappa}\cdot\vec{r}-\omega t\right)} = -\omega^{2} \sum_{\vec{k}} A_{\vec{k}} e^{i\left(\vec{k}\cdot\vec{r}-\omega t\right)}$$

$$\sum_{\vec{k}} \sum_{\vec{G}} \left(-\kappa^{2}\right) b_{\vec{G}} A_{\vec{k}} e^{i\left(\vec{G}\cdot\vec{r}+\vec{\kappa}\cdot\vec{r}-\omega t\right)} = -\omega^{2} \sum_{\vec{k}} A_{\vec{k}} e^{i\left(\vec{k}\cdot\vec{r}-\omega t\right)}$$

collect like terms: $\vec{G} + \vec{\kappa} = \vec{k} \implies \vec{\kappa} = \vec{k} - \vec{G}$

Central equations:

$$\sum_{\vec{G}} \left(\vec{k} - \vec{G}\right)^2 b_{\vec{G}} A_{\vec{k} - \vec{G}} = \omega^2 A_{\vec{k}}$$

Plane wave method

Central equations:

$$\sum_{\vec{G}} \left(\vec{k} - \vec{G}\right)^2 b_{\vec{G}} A_{\vec{k} - \vec{G}} = \omega^2 A_{\vec{k}}$$

Choose a k value inside the 1st Brillouin zone. The coefficient A_k is coupled by the central equations to coefficients A_k outside the 1st Brillouin zone. Write these coupled equations in matrix form.

$$\begin{bmatrix} \left(\vec{k}+\vec{G}_{2}\right)^{2}b_{0} & \left(\vec{k}+\vec{G}_{2}-\vec{G}_{1}\right)^{2}b_{\vec{G}_{1}} & k^{2}b_{\vec{G}_{2}} & \left(\vec{k}+\vec{G}_{2}-\vec{G}_{3}\right)^{2}b_{\vec{G}_{3}} & \left(\vec{k}+\vec{G}_{2}-\vec{G}_{4}\right)^{2}b_{\vec{G}_{4}} \\ \left(\vec{k}+2\vec{G}_{1}\right)^{2}b_{-\vec{G}_{1}} & \left(\vec{k}+\vec{G}_{1}\right)^{2}b_{0} & k^{2}b_{\vec{G}_{1}} & \left(\vec{k}+\vec{G}_{1}-\vec{G}_{2}\right)^{2}b_{\vec{G}_{2}} & \left(\vec{k}+\vec{G}_{1}-\vec{G}_{3}\right)^{2}b_{\vec{G}_{3}} \\ \left(\vec{k}+\vec{G}_{2}\right)^{2}b_{-\vec{G}_{2}} & \left(\vec{k}+\vec{G}_{1}\right)^{2}b_{-\vec{G}_{1}} & k^{2}b_{0} & \left(\vec{k}-\vec{G}_{1}\right)^{2}b_{\vec{G}_{1}} & \left(\vec{k}-\vec{G}_{2}\right)^{2}b_{\vec{G}_{2}} \\ \left(\vec{k}-\vec{G}_{1}+\vec{G}_{3}\right)^{2}b_{-\vec{G}_{3}} & \left(\vec{k}-\vec{G}_{1}+\vec{G}_{2}\right)^{2}b_{-\vec{G}_{2}} & k^{2}b_{-\vec{G}_{1}} & \left(\vec{k}-\vec{G}_{1}\right)^{2}b_{0} & \left(\vec{k}-2\vec{G}_{1}\right)^{2}b_{\vec{G}_{1}} \\ \left(\vec{k}-\vec{G}_{2}+\vec{G}_{4}\right)^{2}b_{-\vec{G}_{4}} & \left(\vec{k}-\vec{G}_{2}+\vec{G}_{3}\right)^{2}b_{-\vec{G}_{3}} & k^{2}b_{-\vec{G}_{2}} & \left(\vec{k}-\vec{G}_{2}+\vec{G}_{1}\right)^{2}b_{-\vec{G}_{1}} & \left(\vec{k}-\vec{G}_{2}\right)^{2}b_{0} \\ \left(\vec{k}-\vec{G}_{2}+\vec{G}_{4}\right)^{2}b_{-\vec{G}_{4}} & \left(\vec{k}-\vec{G}_{2}+\vec{G}_{3}\right)^{2}b_{-\vec{G}_{3}} & k^{2}b_{-\vec{G}_{2}} & \left(\vec{k}-\vec{G}_{2}+\vec{G}_{1}\right)^{2}b_{-\vec{G}_{1}} & \left(\vec{k}-\vec{G}_{2}\right)^{2}b_{0} \\ \end{array} \right]^{-1}$$

There is a matrix like this for every *k* value in the 1st Brillouin zone.

Close packed circles in 2-D

Solved by a student with the plane wave method

Uniform speed of light

TM and TE modes

Use the plane wave method to calculate photon dispersion relations and densities of states.

Photon density of states

Diffraction causes gaps in the density of modes for k vectors near the planes in reciprocal space where diffraction occurs.

photon density of states for voids in an fcc lattice http://www.public.iastate.edu/~cmpexp/groups/PBG/pres_mit_short/sld002.htm

Photonic crystals

Figure 2: The photonic band structure for the lowest-frequency electromagnetic modes of a face-centered cubic (fcc) lattice of close-packed dielectric spheres ($\varepsilon = 13$) in air (inset). Note the *absence* of a complete photonic band gap. The wave vector varies across the irreducible Brillouin zone between the labelled high-symmetry points; see appendix B for a discussion of the Brillouin zone of an fcc lattice.

diamond

Figure 3: The photonic band structure for the lowest bands of a diamond lattice of air spheres in a high dielectric ($\epsilon = 13$) material (inset). A complete photonic band gap is shown in yellow. The wave vector varies across the irreducible Brillouin zone between the labelled high-symmetry points; see appendix B for a discussion of the Brillouin zone of an fcc lattice.

Yablonovite

Figure 5: The photonic band structure for the lowest bands of Yablonovite (inset, from figure 4). Wave vectors are shown for a portion of the irreducible Brillouin zone that includes the edges of the complete gap (yellow). A detailed discussion of this band structure can be found in Yablonovitch et al. (1991*a*).

Woodpile

Figure 7: The photonic band structure for the lowest bands of the woodpile structure (inset, from figure 6) with $\varepsilon = 13$ logs in air. The irreducible Brillouin zone is larger than that of the fcc lattice described in appendix B, because of reduced symmetry—only a portion is shown, including the edges of the complete photonic band gap (yellow).

Student projects

Describe the plane wave method.

Calculate the band structure and density of states for a photonic crystal.

Help complete the table of the empty lattice approximation

Plot the thermodynamic properties of some photonic crystal (you need the density of states)

