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Review

We determined the normal modes of the electromagnetic field.
Each normal mode can be labeled by k and polarization.

We quantized the normal modes and found they have
quantized energies
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Thermodynamic properties of non-interacting bosons

Consider a system of non-interacting bosons that can occupy microscopic quantum states with energies €;. Since the
bosons do not mteract, the energy of one quantum state does not depend on the occupation ot any of the other
quantum states. A macrostate g of this system consists of IV, bosons. The total energy of this macrostate 1s £, .
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Here ng; are occupation numbers that specify how many bosons occupy microstate ¢ m macrostate g. An arbitrary
number of bosons can occupy each microscopic quantum state.
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To calculate the thermodynamic properties, the grand canonical partition function Z,. 1s constructed.
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Here ¢ 18 the chemical potential, kg 15 Boltzmann's constant, and 7" 1 the absolute temperature. The energy F, and
B £) q
particle number N, of the macrostates can be expressed in terms of the microscopic states.
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The mdex g runs over all macrostates. The lowest energy macrostate has zero bosong m all of the microstates. There
are macrostates with just one bogon in one microstate and there are macrostates with many bosons m each ot several
microstates. The sum over all possible macrostates can be written as the sum over all possible microstates.
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Here n; are the nunber of bosons m energy state €;. The n; are independent ot each other and the tactors can be
pulled through the sums,
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All of the factors i square brackets are the same. This can be rewritten as a product where the mdices are not
necessary anyimore,
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At low particle densities and high temperatures, the average number of bosons m all of the microscopic states will be
less than one. Thus the chemical potential will be less than the lowest microscopic energy level, pp << €. In this case,

the sum over n is a geometric zeries "1 + = + 22 + - -+ = ﬁ " where £ = exp(— %) < 1. Summing this
sertes vields,
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Ag the temperature decreases or the particle density mcreases, the chemical potential will increase. As it — €q the
occupation of the lowest energy level becomes large and the bosons undergo a Bose-Emstein condensation. Here, we
will only consider the case where 1 < €.

The thermodynamic grand potential can be determined from the grand canonical partition function,
@ =U~-TS5— uN = —kpTIn(Z, ). Here U is the internal energy, S is the entropy, and NV is the average

number of bosons in the system.
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¢ =—kpTIn(Z,)= kBTZIH [1 — exp(‘tig_;a‘)]

This sum can be approximated by an integral over the dengsity of states ID( E). The density of states 1s defined per
unit volume V so the grand potential density 1s,
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The particle density 1z minus the derivative of the grand potential density with respect to the chemical potential.
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Normal modes

For an electromagnetic field in a cubic region of length L with periodic
boundary conditions, the vector potential has the form:
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Density of states
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Density of states

2
D(k)dk = %dk = D(w)dw

use the dispersion relation to convert D(k) to D(w)
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Summary of the results for the quantization of the wave equation in 1,2, and 3 dimensions

1-D 2-D

Wave Equation 2 2 d?A. d%A, g A

¢ =speed of light CQ%Z di 62{ 21 s 2j N 21
2 z

A= ™ component of the vector potential X dt - 4 &

Figenfunction solutions
K =wavenumber

@ = angular frequency

A =exp (z.' (Fx — ar))

Dispersion relation ®w=ck m=c ‘; ‘
. 2 k y
Density of states DiEy=— DRy =— [m™]
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Density of states 5 W
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Diay= D) L D@)=— [s/m] Dey=—"  [sm’]
da
Density of states
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(4) ()d,% ()/12 [m™] ()f [m™]
% = wavelength
Density of states 5 z
d@ D(E)y=—— ['m® D(E)= T'm?
D(E)= D)2 B U Otz Bl
dE
Chemical potential w=an w=0
Intensity spectral density 2}102 i 4;102 ol
k5= 13806504 x 102 [J/K] Boltzmann's I(4)= [Tm™s™] I(4)= [Jm™s"]
3 ho 4 he
constant A7\ exp -1 A% exp -1
&= 6 62606396 x 1074 [T 5] Planck's constant AkgT AkgT
Wien's law
dI(4) N Amax _ 0.0050994367 [m] j(mx _ 0.0036696984 [m]
dA |y i T
Stefan - Boltzinann law
I=|1(AdA e T 8c(3)k, T’
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&%) = 1.202 Riemann ¢ finction
o =567 = 10°% Stefan-Boltzmann constant

3k

hic




Light in a crystal

Light moving in a periodic structure will be diffracted
when the diffraction condition is satisfied.
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Any periodic function can be
represented as a Fourier series

f(F) =2 [

G =reciprocal lattice vector (depends on the Bravais lattice)

For real functions: fo = f.o

Every Bravais lattice has a reciprocal lattice.



Reciprocal space

K-space is a space of plane waves.

A k-vector points in the direction that the wave 1s moving.
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Plane wave:

exp(—é -r)=cos(G.x+G y+ G z)+isin(G.x+G,y+G z)



Diffraction condition

o
k'-k=G

o For every G there is a -G so the
diffraction condition can also
be written as
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a wave will be diffracted if the wave vector ends on one of the planes



Brillouin zones

Leon Brillouin
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1st Brillouin zone consists of the k-states around the origin that can be reached
without crossing a plane.



Bloch Theorem

f (F) = Z C ek Any wave function that satisfies
periodic boundary conditions
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These £'s label the symmetries

fi(F) = 2 Cpge ™ =€ 3 Cp e = Mg ()
G

periodic function

Bloch form f,; (7) = eik'FM,g (7)

Tmnlf]; (}7) —_ eil€~(i7+m51+n52+lﬁ3)ulg (77; + mc_il + nc_iz + lC_i3) _ eil;-(md1+nc72+lc_i3)fl€ (’7)

Eigen function solutions of the translation operator have Bloch form.



Photonic bands
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Fig. 2. The eigenfunction solutions £+ and £ . Source file.
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