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LC circuit
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Transmission line

L inductance/m _dar _ ar - dl — Cd_V
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V, =Vyexp(i(kxc—ot))
normal mode solution: I =1 exp( i (fox— a)t))

Each normal mode moves independently from the other normal modes



Transmission line
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Substituting the normal mode solution » =V, exp (i (hx — oot ))
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An infinite transmission line is resistive, typically ~ 50 €.



Transmission line

Wave equation

LAV _dV 1
Vs > dr’ JLC

c 1s the speed of waves

Not clear what mass we should use in the Schrédinger equation



The Schrodinger equation is for amateurs

Lagrangian I ( X, x)
(constructed by = Euler.— Lagrange
inspection) equations:
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Conjugate p= 8_[ x
variable: ox Classical equations of motion
l (Newton's law)

Legendre transformation: H = px—L
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Transmission line

normal mode solution: V, =V, exp (i (kx — a)t))

4
kY, =—k
Cdr

Each normal mode moves independently from the other normal modes



Lagrangian

Construct the Lagrangian 'by inspection'. The Euler-Lagrange
equation and the classical equation of motion for a normal mode are,
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classical equation for the mode &
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Hamiltonian

The conjugate variable to V, 1s,
o :
9L _p
ov,
The Hamiltonian is constructed by performing a Legendre

transformation ) 2712
’ V.. ck
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To quantize we replace the conjugate variable by —ifi ——
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Quantum solutions
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Viw=E
2m dx® 2 2 dv} 2 VRV

This equation 1s mathematically equivalent to the harmonic oscillator.

E:ha)(]+%) j=0,1,2,...
spring constant — [
W=, w=A\c’k’
m

mass - spring
W =c ‘k‘

Jj 1s the number of photons.



Dissipation in Quantum mechanics

Transmission line
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An infinite transmission line is resistive



Nitrogen

W, U exp(—lE%
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¥ U exp(—%



Dissipation in quantum mechanics

Quantum coherence is maintained until the decoherence time. This
depends on the strength of the coupling of the quantum system to other
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Decay is the decoherence time.



Dissipation in solids

At zero electric field, the electron eigen states are Bloch states. Each
Bloch state has a k vector. The average value of £ = 0 (no current).

At finite electric field, the Bloch states are no longer eigen states but we
can calculate the transitions between Bloch states using Fermi's golden
rule. The final state may include an electron state plus a phonon. The
average value of & is not zero (finite current).

The phonons carry the energy away like a transmission line.
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The quantization of the electromagnetic field

Wave nature and the particle nature of light

Unification of the laws for electricity and magnetism
(described by Maxwell's equations) and light

Quantization of fields
Derive the Bose-Einstein function
Planck's radiation law

Serves as a template for the quantization of noninteracting
bosons: phonons, magnons, plasmons, and other quantum
particles that inhabit solids.

http://lamp.tu-graz.ac.at/~hadley/ss2/emfield/quantization _em.php



Maxwell's equations

V.E:ﬁ
80

V-B=0

Vxﬁz—a—B



The vector potential

B=VxA
Fo_yy-4
ot
Maxwell's equations in terms of A Coulomb gauge V.4 =0
v.24 o — Ov.i=o0
ot Ot
V-VxA4=0 = Vector identity
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The wave equation

- 0° A
VXVXA:—IUOEO?

Using the identity VxV x4 :V(V.;j)_vzgj,

- - 0’4
wave equation 2V 4 =

ot*

normal mode solutions have the form: A(¥,t) = Aexp(i(k -7 — wt))

Substituting the normal mode solution in the wave equation results in the
dispersion relation

wzc‘k‘



EM waves propagating in the x direction

A=A, cos(k x—t)z

The electric and magnetic fields are




Lagrangian

To quantize the wave equation we first construct the Lagrangian 'by
inspection'. The Euler-Lagrange equation and the classical equation of
motion are,
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Hamiltonian

The conjugate variable to 4, is,
oL -
=4
04
The Hamiltonian is constructed by performing a Legendre

transformation, 42 k2
S
_I_

H=AA -L= : A’

To quantize we replace the conjugate variable by —ifi —
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Quantum solutions

1 dy kP
_I_
2 dA> 2

Ay =Ey
This equation 1s mathematically equivalent to the harmonic oscillator.

E :ha)s(jS‘I'L) jS=O,1,2,...

J, 1s the number of photons in mode s.
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Non-interacting boson systems

Photons, phonons, magnons, plasmons can be approximated as
non-interacting bosons.

To calculate their thermodynamic properties:

Construct the partition function

Zgr(T,ﬂ)=ZeXp(kﬂTj ex [

kB

R e

gr
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Deduce the thermodynamic properties:
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