Fig. 5.7 Schematic magnon and phonon dispersion curves. The magnon
curve has been compressed by a factor of order 10 for illustrative purposes.
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Longitudinal plasma waves
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There 1s no magnetic component of the wave.

Plasma waves can be quantized like any other wave
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Transverse optical plasma waves

The dispersion relation for light
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Surface Plasmons

Waves in the electron density at the boundary of two materials.

Surface plasmons have a lower frequency that bulk plasmons. This
confines them to the interface.
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Surface Plasmons

High-resolution surface plasmon imaging of gold
nanoparticles by energy-filtered transmission electron
microscopy

PHYSICAL REVIEW B 79, 041401 R 2009

Surface plasmons on nanoparticles are efficient at
scattering light.

Green and blue require different sized
particles.
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Surface plasmons are hybrid modes of longitudinal electron
oscillations and light fields at the interface of a metal and a
dielectric'?. Driven by advances in nanofabrication, imaging
and numerical methods™*, a wide range of plasmonic elements
such as waveguides™, Bragg mirrors’, beamsplitters®, optical
modulators? and surface plasmon detectors'® have recently been
reported. For introducing dynamic functionality to plasmonics,
the rapidly growing field of organic optoelectronics'' holds
strong promise due to its ease of fabrication and integration
opportunities. Here, we introduce an electrically switchable

100nm Al (cathode)

30 nm Alg, (electron transporting layer)

| 13nm BCP (exciton blocking layer)

30 nm 6 wit% PtOEP:Alq, (emissive layer)

20 nm TPD (hole transporting layer)
60 nm Au (anode)

Surface plasmons are used for biosensors.
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Polaritons

Transverse optical phonons will couple to photons with the same ® and k.

photon dispersion

|

Optical phonon branch

S

TS

avoided crossing

Acoustical
phonon branch

|

|

i

|

1

|

!

!

|

|

!

|

I

I

|

1
i

a

Light Bragg reflects off the sound wave; sound Bragg reflects off the light wave.



Newton:

polarization:

Polaritons
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dt Y modelled by a 1-D mass-
C spring system.
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Polaritons

Ne’E
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K’E = py0° (&,E +P)

~w’P + P =

2
Hog, 0" —K* @
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There are two solutions for
every K, one for the upper
branch and one for the lower
branch.

A gap exists in frequency.
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Polaritons are the normal modes
near the avoided crossing.



w, in 104 ¢

Polaritons allow us to study the properties of
phonons using optical measurements
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By looking at the reflectance in different crystal directions, you can determine the
frequencies of the transverse optical phonons.



Polaritons and optical properties
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Optical properties of insulators and semiconductors

In an msulator, all charges are bound. By appliing an electric field, the electrons and ions can be pulled out of thewr equilibrium positons. When this electric field 5
turned off, the charges oscillate as they return to their equilibnium positions. & simple model for an insulator can be constructed by describing the motion of the charge
as a damped mass-spring systermn. The differential ecquation that describes the motion of a charge 1z,

Eewriting above ecquation using wy = y
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atd the damping constant v = % yields,
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Ifthe electric field is pulsed on, the respense of the charges is described by the impulse response function g(t). The impulse respense function satisfies the equation,
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The solutlon to this th.15 equation s zero before the electrc field is pulsed on and at the time of the pulse the charges suddenly start oscillating with the frecquency
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Polarons

@@@ 9%,

A polaron is a quasiparticle consisting of an s
electron and an ionic polarization field. The ® @ @
electron density 1s low so the screening by o © g @

electrons can be neglected.
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Electronic charge is partially screened by lattice ions. This is a charge -
phonon coupling.



Large polaron (Frohlich polaron)
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The spatial extent of the polaron is much s
larger than the lattice constant. ® @ @
. g @ o 9
Large polarons typically form bands. @5 ® o
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Electrons move in bands with a large effective mass (432 m, for NaCl)



Small polaron (Holstein polaron)
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For a small polaron, the polarization is £
about the size of the lattice contant. ® e @ @
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Small polaron - Holstein Hamiltonian - electrons are localized and hop
(thermally activated or tunneling). Small polarons often form in organic
material. In soft materials the energy for making a distortion 1s smaller.



Bipolarons

Two polarons can bind together to form a bipolaron (a quasiparticle).
Elastic strain energy 1s reduced by sharmg the polarization field.

Bipolarons have integral spin -> they are bosons.

It 1s possible that the condensation of bipolarons mto the same ground state
could lead to superconductivity.



Bipolarons
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Figure 10, Evolution of the polypyrrole band structure upon
doping: (a) low doping level, polaron formation; (b) moderate
doping level, bipolaron formation; (¢) high (33 mol %) doping
level, formation of bipolaron bands.

J. L. Breda and G. B. Street, Acc. Chem. Res. 1985, 18, 309-315.



