Advanced Solid State Physics

Outline

Electrons

Magnetic effects and
Fermi surfaces

Magnetism

Linear response

Transport

Crystal Physics

Electron-electron
interactions

Quasiparticles

Structural phase
transitions

Landau theory
of second order
phase transitions

Superconductivity

Quantization

Photons

Exam questions

Appendices

Lectures

Books

Course notes

TUG students

      

Solid-state physics, the largest branch of condensed matter physics, is the study of rigid matter, or solids. The bulk of solid-state physics theory and research is focused on crystals, largely because the periodicity of atoms in a crystal, its defining characteristic, facilitates mathematical modeling, and also because crystalline materials often have electrical, magnetic, optical, or mechanical properties that can be exploited for engineering purposes. The framework of most solid-state physics theory is the Schrödinger (wave) formulation of non-relativistic quantum mechanics.

- Solid state physics in Wikipedia

The most remarkable thing is the great variety of qualitatively different solutions to Schrödinger's equation that can arise. We have insulators, semiconductors, metals, superconductors—all obeying different macroscopic laws: an electric field causes an electric dipole moment in an insulator, a steady current in a metal or semiconductor and a steadily accelerated current in a superconductor. Solids may be transparent or opaque, hard or soft, brittle or ductile, magnetic or non-magnetic.

From Solid State Physics by H. E. Hall

To a large extent, our success in understanding solids is a consequence of nature's kindness in organizing them for us... By the term solid we shall really always mean crystalline solid, and, moreover, infinite perfect crystalline solid at that.

From States of Matter by David L. Goodstein