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1 introduction
1.1 crystal physics

In Crystal Physics you try to describe constrains that arise in the properties of
solids due to microscopic symmetries.

1.2 translation, Bravais lattice

Crystals have an ordered structure that repeats itself. In a three - dimensional
space you can find three vectors (a;) to describe this:
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i=1

There are 14 Bravais lattice in three dimensions.

1.3 pointgroups

If you have a structure made out of several points or objects, this structure may
belong to a certain point group. This means if you perform a certain operation
(rotation, inversion, mirroring) the structure stays the same. The points may



change the positions but you can not see a difference. These operations can be
described by a matrix. These matrices have to fulfill certain conditions:

orthogonality: A-AT =FE
(E ... Einheitsmatrix)
normalized:  |det (4)] =1

If you multiply the position vector with this matrix you get the new state. In
three dimensions you need a three dimensional matrix:

a1l a2 ais
A= an ax a3
as; asz2 ass

If you also demand a repeating structure, like it can be found in crystals
(the 14 Bravais lattice) out of an infinte nummber of point groups only the 32
crystallographic point groups are possible. As an example you can look at the
group C5. The groups C,, contain all rotations of %th of the whole rotation of
360°. So C contains the rotations of 72°, 144°, 216°, 288° and 360°. You can
imagine a structure with this symmetry but, as you know no crystal has this
symmetry.

If you add the basis to the Bravais lattice some symmetry operations may
no longer leave the crystal unchanged, so the point group can be a different one.

1.4 spacegroups

If you add Translations

tq
t=| t (in 3 dimensions)
t3

you get more symmetry operations. If you assume periodic boundary condi-
tions you now get 230 space groups. An additional symmetry operations is for
example a rotation and a translation together.

All the operations can be described by a matrix (same conditions as for point
groups) and a translation vector: { A|t}

2 general considerations

2.1 generating matrices

If you want to describe a point group and all the symmetries it contains, it is
sufficiant to only give the generating matrices. With them you can calculate all
the elements of the group. You have to multiply the element with itself until
you get the identity matrix.



Examples for 3 dimensions:

-1 0 0
1= 0 -1 0
0 0 -1

The inversion operation leads to the Group:

-1 0 0 100
i=| 0 -1 o0 ?=1010|=E
0 0 -1 00 1
0 -1 0
C,=|1 0 0
0 0 1
This roation gives the group:
0 -1 0 -1 0 0 0 1 0
c,=(1 0 o0 |];Ci= 0 -1 0 |=Cy;Ci=| -1 00 |;C
0 0 1 0 0 1 0 0 1

2.2 reduced notation

The reduced Notation is used for symmetric indices (a;; = aj; Vi, j) and mostly
for 37% rank tensors or 4" rank tensors.

11 -1

22 — 2

33— 3
23=32—-14
13=31—-5
12=21—-6

For example you can look at a 3"¢ rank tensor:

911 g12 913 di14 Ygi5 Jdie g111 G122 9133 9123 G113 G112
G = 921 g22 923 Gg24 g25 926 = 9211 G222 9233 G223 G213 G212
931 932 933 934 G35 G36 g311 9322 09333 9323 G313 G312

2.3 conditions for the tensors of certain materials

If a crystal belongs to a certain point group, has a certain symmetry, the prop-
erties of the crystal should have the same symmetry and therfore the crystals
tensors.

For example you can have a crystal that is symmetric under the rotation of

0 -1 0
90° around the z - axis. Cy = 1 0 0 | Then the results of experiments,
0 0 1

the crystals properties should not change under this rotations. For a three
dimensional crystal this leads to following conditions for the tensors:

OO =
o = O
= o O
I



2.3.1 1% rank
g1 —g2 \ g1
G=1| o TG = o |=1| @
g3 g3 gs

This gives the conditions: g3 = —¢g2, g2 = g1, which can only be satisfied by
g2 = g1 = 0. So only the following form of tensors is allowed:

0
G = 0
g3
2.3.2 2" rank
g11 912 G13
G = 921 Gg22 g23
931 G932 g33

You can write the transformation as a matrix multiplication:

922 —g21  9g23
T (G) = C'4T GOy = —g12 d11 —0g13
g32 —g31 933

e

This leads to the conditons: goo = ¢11; g31 = ¢g32 = 0; g13 = ¢g23 = 0; g12 = —¢o1.

For symmetric tensors you get additionaly: g12 = g21 = 0.

2.3.3 37? rank

For

gi111 G121 g131 di112 G122 9132 9g113 9123

G = 9211 G221 G231 G212 G222 9232 G213 G223

9311 g321 9331 ¢g312 9g322 9332 9313 G323

—g211 —g221 —G231 —g212 —g222 —g232 —g213

G = g111 9121 9131 g112 g122 9132 g113

g311 9321 9331 g312 9322 9332 g313

9221 —g211 —9g231 9222 —g212 —Yg232  g223
G" = —gi121 g111 9131 —g122 g112 9132 —g123
—g321 g311 9331 —g322 g312 9332 —g323

—0222  g212 9232 9221 —g211 —g231 9223
G" = g122 —g112 —g132 —Yg121 g111 9131 —3g123
9322 —g312 —9g332 —g321 9311 g331 —g323

9133
9233
9333

—g223
g123
9323

—9g213
g113
g313

—9213
9113
9313

—g233
9133
9333

—3233
g133
9333

—g233
g133
g333

After fulfilling these conditions you have to include the symmetry in the last

two indices and this gives the result in table.
Similar calculations can be made for 4** rank tensors.



3 examples

For the following descriptions I use the einstein notation. If on one side of the

equal sign an index appears twice you have to sum over it.

3.1 inversion symmetry

If you have inversions symmetry you have to multiply with —1 for each rank of
the tensor (look above), everything else stay the same. So all tensors with an

odd number of ranks have to be zero (1%, 374 5t).

Properties that need tensors of this form can not be observed in crystals

with inversion symmetrie. For example piezoelectricity or piezomagnetism.

3.1.1 callculations

-1 0 0
Now lets show the conditon that arrise for inversion i = 0o -1 0
0 0o -1
In first rank:
—9g1 g1
TG = —g2 | = g2 | = all elements have to be zero
—93 gs
In second rank:
g11 912 913
T(G)=| g1 922 go3 = (G = no conditions

931 G932 g33
In third rank:

—g111  —g121 —Yg131 —g112 —Gg122 —gi132 —gi113 —gi123
T (G) = —g211 —¢g221 —g231 —9g212 —g222 —g232 —g213 —G223
—g311 —¢g321 —g331 —9g312 —g322 —g332 —¢g313 —G323

= all elements have to be zero

3.2 0" rank tensors

This simply is a constant. You have 1 independent element.

3.2.1 density p

It is independent of any tensors.

Am=p-AV

—3g133
—3g233
—J333



3.2.2 specific heat ¢
AQ =c- AT

3.3 1% rank tensors

You have 3 independent elements. As already described this tensor is zero for
all groups with inversion symmetry.

3.3.1 pyroelectricity p;

AP, =p;- AT
3.3.2 electrocaloric effect p;

AS =p; - AE;

3.4 symmetric 2"¢ rank tensor

You have 6 independent elements. (g;; = g;;)

3.4.1 electrical conductivity o

Ji = oir Bk
3.4.2 electrical resistivity px;

Ex = priji
3.4.3 thermal conductivity k;;

Qi = —kij(VT);

3.4.4 dielectric permitivity ¢;;

Di = GijEj
3.4.5 magnetic permitivity p;;

B; = piHj



3.4.6 thermal expansion «;;

€ij = OzijAT

3.4.7 optical rotation

3.5 asymmetric 2"¢ rank tensor

You have 9 independent elements.

3.5.1 Seebeck - effect 3;i

E; = = (VT),

3.5.2 Peltier - effect

Qi = ik

3.5.3 Hall - effect

In general you would describe the Hall - effect with a tensor of 3" rank:
E; = ajjji By

But as already explained then the effect would only occur in materials with-
out inversion symmetrie. As most of you know something similar to the Hall -
effect occurs in vacuum. A ray of electrons can be diverted by a magnetic field.

So the question arrises, what role does the material and its properties play
in the Hall - effect.

A possibility to describe the Hall - effect is to use a 2"¢ rank tensor that
depends on the magnetic field and the symmetries of the crystal:

E; = pix (B) ji
The 2" rank tensor has to fulfill following conditions:
pir (B) = —pri (B) = pri (—B)

So this tensor is antisymmetric.

If you look at asymmetric 2" rank tensors for certain materials, you see,
that an antisymmetric form is not possible, unless you take into acount, that
the magnetic field destroys certain symmetries.

So the symmetries of the crystal and the magnetic field together form a new
symmetry class. Within this point group the Hall effect can be described with
a second rank tensor (antisymmetric).



3.6 symmetric 3" rank tensor

You have 9 independent elements.(gijx = gjik = grij = - ..) As already described
this tensor is zero for all groups with inversion symmetry.

3.7 asymmetric 3"¢ rank tensor

You have 18 independent elements.(gxi; = grji # 9jki, Symmetric in the last
two indices)

(piezoelectric and elektrooptical tensors)

As already described this tensor is zero for all groups with inversion symme-
try.

3.7.1 piezoelectric effect d;;;

P = dijrojk
3.7.2 innverse piezoelectric effect ¢;;;

€k = lijuEi
3.7.3 Piezomagnetic effect ¢;;

M = quijoi;
3.7.4 second harmonic generation dj;;

P(2w)k = dkijEiEj
3.7.5 electrooptic effect g;;,
Aaij = Rij By

3.8 symmetric 4" rank tensor

You have 21 independent elements.(gijix = gjitk = 9jiki = Gikij = - -.) (mostly
elastic constants)

3.8.1 elastic stiffness c;;i;

Oij = Cijki€kl



3.8.2 elasitc compliance s;;;

€ij = CijklOkl

3.9 asymmetric 4" rank tensor

You have 36 independent elements.(gijlk = Gjitk = Gjikl 7 Gikij, Symmetric in
the first two and last two indices)

3.9.1 piezooptic effect m;;1;

Aaij = TR0k

3.9.2 photoelastic effect

3.9.3 electrostriction pn;

€k = MimjkE1Em

3.9.4 piezoresistivity R;ju

Pij = Rijriok

3.10 symmetric - asymmetric tensors
3.10.1 symmetric

You get an symmetric tensor if the vector components are connected by a deriva-
tion of a thermodynamical potential. If this is true one variable can be described
as the derivation after the other and the derivations can be exchanged:

For example stiffness (4*" rank tensor):

oG
= _Eij
80’1']'
8€ij 62G 8ekl
Sijkl = = - = = Sklij
* (%kl 30ijaakl 80’1-]' *

(You can use Schwarz’s theorem, that states that if the derivatives exist they
can be exchanged.)
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3.10.2 asymmetric

For an asymmetric tensor on the other hand you get different derivations and
they can not be exchanged: For example the piezoelectic coefficent (3"¢ rank
tensor):
dor — P, 0%G _ 0%G _8ejk._t
CL (9ij B _ankaEi n _aEiank - 3E2 — vk

As you can see this time you get no condition for symmetry, but a relation
between the coefficents of the piezoelectric effect and the inverse piezoelectric
effect.

For example the electrostriction (4! rank tensor):

%€ e e %P,

Himik = OE0E,, 00,0E0E,  0E0Emdo,  0Emdos,

As you see you get also the coefficent for some kind of inverse effect, although
I do not know, if it has any physical meaning.

3.11 wvariables

e T ... temperature

e E .. .electric field

e j ...current density

® p ...resistivity

e V ...volume

e m ... Mmass

e () ...heat flux

e S ...entropy

e D ...dielectric displacement
e P ... electric polarisation
e H ... magnetic field

e B ...magnetic induction
e M ...magnetisation

e ¢ ...strain (Verformung)

e o ...stress (Belastung)

e Aq ...dielectric impermeability (direction depnding refractive index)
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