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1 Preamble
This short introduction is meant to give other students a basic understanding
in Density Functional Theory (DFT) and Quantum Espresso (QE). Although
there are a lot of resources on DFT online, these are often either too superficial,
or too in depth. Here we will try to find a compromise between the two, and
provide guidelines to get a calculation done with some understanding of what
is happening inside the "DFT black box". It would be impossible to give an
exhaustive explanation, for which I’ll recommend references in the text.

I strongly recommend to anyone interested in this topic the introductory
lecture of prof. Paolo Giannozzi (one of the fathers of Quantum Espresso), which
you can find on YouTube (https://youtu.be/1AH2pkijDPg) [8]. It lasts about
one hour and gets you through the theory very quickly. It covers many important
aspects, as good as it can be done in one hour. You may also be interested in
the second video of the channel (Density Functional Perturbation Theory, used
for phonon calculations) and in the third video (specific implementation of DFT
in Quantum Espresso)

An in-depth treatment of basic DFT is also given in A Primer in Density
Functional Theory [7]. It is way too long for a simple project, but it can be
a useful reference. The two founding papers for DFT (Hohenberg and Kohn
theorem, and Kohn and Sham theorem) are also listed in bibliography [10, 11].

2 Density Functional Theory
Density Functional Theory (DFT) is by far the most popular quantum mechan-
ical modeling method for solid state physics. The main reason is its quite good
accuracy compared to its computational cost. As suggested by its name, in
DFT all the relevant physical quantities can be expressed as a functional of the
electron density.

To understand why this is an advantage, let’s consider the electronic Hamil-
tonian in a solid, within the Born-Oppenheimer (BO) approximation. Since we
only care about the electrons, we neglect the ion-ion interaction and the ionic
kinetic energy.

H = −
∑
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−
∑
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where ~r is the position of the electron and ~R is the position of the ion. The three
terms on the right hand side of the equations are the electronic kinetic energy,
the ion-electron interaction and the electron-electron interaction, respectively.
As it will occur later, it is useful to mention now that we can think of the ion-
electron interaction as if the fixed ions generate an external potential, which
acts on the electrons.
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If we want to describe our N-electron system then we have to solve the
Schrödinger’s equation

HΨ = EΨ (2)

where Ψ is the wavefunction of the N-electron system, and E is its total energy.
Now, Ψ has to describe N electrons, with N≈ 1023, and each electron has 3
degrees of freedom, so Ψ depends on 3N variables. Instead if we can express the
total energy E as a functional of the electron density n(~r), we have E = E[n(~r)],
where n is a function of only three variables. The first Hohenberg and Kohn
theorem states that, in fact, this is possible [10]. From an analytical perspective
the problem is not simpler, because the explicit functional dependence of E
from n is not known, but from a numerical point of view, things are incredibly
simpler.

In particular, the second Hohenberg and Kohn theorem states that for a
constant number of electrons N, the electron density n(~r) which minimizes E[n]
has to be the ground state electron density of the N-electron system [10]. This
implies that we can start from an arbitrary n0(~r) and follow a minimization
procedure until we find the minimum of E[n]. When E is minimized, n will be
the correct ground-state electron density 1.

So far we realized that it is possible to express the total energy of the system
as a functional of the electron density, and a variational principle guarantees that
we can find a (unique) solution for the energy of the system, but we have no
idea on how this could be done. The next step is to observe that the Hohenberg
and Kohn theorems do not have any requirements on the Hamiltonian of the
system, i.e. they are also valid for an Hamiltonian without electron-electron
interaction. This property is exploited by Kohn and Sham, which arrive to
the following conclusion: it is possible to represent the ground state density
n(~r) of the interacting N-electron system (with Hamiltonian (1)) as the ground
state density of a non-interacting system of N electrons in a fictitious external
potential, called self-consistent potential (vscf ), constructed in such a way that
the correct ground state density is reproduced [11]. This conclusion represents
an immense advantage, because whenever electrons are non-interacting we can
decouple the Schrödinger’s equation in N independent equations (also called
Kohn&Sham equations), solve them one by one to obtain the single particle
orbitals (also called Kohn&Sham orbitals) and from those calculate the ground
state charge density. {

−~2∇2

2m
+ vscf (~r)

}
ψi(~r) = εiψi(~r) (3)

Once the ψ are known, I can construct the ground state electron density by
summing over the square modulus of the non-interacting Kohn&Sham (KS) ψ,
i.e. n(~r) =

∑N
i=1 |ψi(~r)|2. Note that n is the same for both the interacting and

non-interacting system!
Within suitable approximations on the dependence of the total energy on

the electron density (especially for the so-called exchange-correlation energy),
1The first Hohenberg and Kohn theorem guarantees that the solution is unique
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the form of vscf (~r) can be constructed starting from the ionic positions and the
electron density n(~r). Note that n(~r) is both a required ingredient to construct
the Hamiltonian, and one of the results we are interested into! The solution has
to be reached using a self-consistent algorithm: we start from a trial density
n0(~r), construct vscf (~r), solve (3), calculate n1(~r) and so on, until our results
do not change from one cycle to another (i.e. we achieved "self consistency").
The self consistent (SCF) loop is the central loop in any DFT code.

2.1 What can we calculate with DFT?
DFT can be used to calculate the ground state energy of a system, and the
eigenvalues εi of the single-particle equation give the dispersion relationship
ε(~k), as will be clarified later. 2.

Moreover, a perturbative approach to DFT (called Density Functional Per-
turbation Theory) can be used to calculate the n-th order derivatives of the
total energy with respect to a perturbation, which gives quantities such as the
forces acting on each atom, pressure, phonon frequencies, and so on. It makes
use of the Hellman-Feynman theorem for first derivatives and its extension, the
2n+1 theorem, for higher order derivatives.

In short, we can reliably calculate:

• Total energy of a given structure

• Band structure, density of states

• Forces acting on each atom, stress tensor

• Elastic properties

• Phonon frequencies (within the harmonic approximation)

• Electric polarizability, Raman and Infrared activity

• Electron-phonon coupling, superconducting Tc

2.2 What can’t we calculate with DFT?
DFT is a ground-state theory, therefore it fails to calculate time-dependent
properties, such as excited states or response to time-dependent fields. There is
a complicated extension to the theory which does that (Time-dependent Density
Functional Theory).

It is very difficult to describe localized states within DFT. Atoms with local-
ized d or f orbitals such as some transition metals, actinides, and lanthanides,
can be problematic. Calculations with these elements should be carried out
carefully, and results should be examined critically.

2From a formal point of view there is no direct correspondence between the eigenvalues of
the single particle equations and the eigenvalues of the full, interacting equation. However
there is very often a good correspondence, and DFT bands are nowadays accepted as a good
estimate of the real bands.
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3 The Quantum Espresso distribution
Quantum Espresso is an integrated suite of Open-Source computer codes for
electronic-structure calculations and materials modeling at the nanoscale. It is
based on density-functional theory, plane waves, and pseudopotentials. [2].

We will worry about plane waves and pseudopotentials in section 4.1. For
now it is enough to say that Quantum Espresso is an ensemble of programs which
can be used to calculate the properties listed in 2.1. The installation can be a
bit tricky if you are not familiar with bash. The following instructions for instal-
lation will work for most Linux distributions and Mac OSX. For the latter you
first need to install the command line tools (go to https://developer.apple.
com/downloads/index.action, register and download command line tools).

3.1 How to install
1. Go to https://gitlab.com/QEF/q-e/tags

2. Download the latest version by clicking on the cloud with a down arrow
(.zip or .tar format)

3. Unpack the downloaded folder

4. With the terminal, change directory into the newly created folder (e.g. cd
/home/Downloads/q-e-qe-X.X.X/)

5. I recommend installing the parallel environment OpenMPI. Although this
is not strictly necessary, it allows you to use multiple processors to speed
up the calculations.

6. Execute "configure" script by typing "./configure". This does most of the
work for you, as it checks whether you have the necessary libraries.

7. If a library or a compiler is missing, it will give an error

8. Copy the name of the missing library on google and find a package which
contains it (Stack Exchange is your friend)

9. Linux systems: type "sudo apt-get update", then "sudo apt-get upgrade",
then "sudo apt-get install NAME_OF_PACKAGE"

10. Max OSX systems: you may need to install macports or homebrew, and
then do "sudo port install NAME_OF_PACKAGE" or "brew install
NAME_OF_PACKAGE"

11. Once all the necessary libraries are there, the script will finish with success

12. Execute the command "make all"

13. Again, if you do not have "make" installed, you can install it via apt-get
(Linux) or homebrew (OSX)

14. The code will be compiled, and executables copied into the q-e-qe-X.X.X/bin/
folder. In order to get access to the executables from anywhere, you have
to add them to the $PATH variable
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15. Open the file ".bashrc" or ".bash_profile" in your home folder with any
text editor. This is a hidden file, so you need to open it from the terminal,
typing "vim /home/.bashrc" or "emacs /home/.bashrc"

16. Add the line "export PATH=$PATH:/path/to/qe-folder/bin/" (e.g. ex-
port PATH=$PATH:/home/Downloads/q-e-qe-X.X.X/bin) to your .bashrc
or .bash_profile folder

17. Close and re-open the terminal (it will force it to load the new settings)

18. Try to type "pw.x" and press enter. If you did everything correctly, the
program pw.x should start (you can kill it with ctrl+c)

3.2 Packages
There are a lot of executables inside the q-e-qe-X.X.X/bin/, here’s a short (not
exhaustive) list, with a short description. More details on how to use each code
are described in section 4.

• pw.x

• It is by far the main and most important: it executes the self consistent
calculation to find the ground state charge density. It can also minimize
forces to find the optimal structure from a given set of atomic positions.
The results of this calculation are the starting point for any other calcu-
lation.

• dos.x

• A small script which sums over the eigenvalues obtained by pw.x to get
the density of states

• bands.x

• Another small script which collects the output of a special pw.x calcula-
tion, and produces a data file to plot the bands

• ph.x

• A code which uses Density Functional Perturbation Theory to calculate
the dynamical matrix at different ~q points in the Brillouin zone (BZ). The
dynamical matrices are used by other executables to calculate the phonon
dispersions. It can also calculate the electron-phonon coupling.

• q2r.x

• A small script which transforms the dynamical matrices (reciprocal space)
to the interatomic force constant matrices (real space). It is an interme-
diate step to calculate the phonon dispersion relationship

• matdyn.x

• A small script which takes the interatomic force constant matrix and in-
terpolates them on a given path in the BZ. Used to calculate the phonon
dispersions.
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• pp.x

• A post processing tool to plot various observables (charge density, wave
functions, self-consistent potential and so on)

• plotband.x

• A useful tool to collect the result of a band structure calculation and
transform it into a gnuplot-readable file

I also recommend the installation of a visualization software. Xcrysden is
the most integrated with Quantum Espresso, and can be installed by just typing
"sudo apt-get install xcrysden" (Linux) or "sudo port install xcrysden" (Mac
OSX, once macports is installed).

To visualize the structure open an output file of QE by typing "xcrysden
–pwo output_file.out"

Another very nice visualization software is VESTA (http://jp-minerals.
org/vesta/en/). It is less integrated with Quantum Espresso, but it has much
better graphical options to make good-looking structures.

4 Running a DFT calculation
Running a calculation requires an input file for each package, containing infor-
mation on the configuration of ions (unit cell, atomic positions) plus some other
numerical parameters, and a pseudopotential file for each element in the input
file. I recommend reading the next section ("Understanding the calculation")
to get a feeling of what each of these parameters mean. If you don’t care and
you just want to crunch some numbers, I have provided an example for each
calculation. The examples show calculations for the cubic phase of copper.

Once the input file is ready, execute the command
"pw.x < input_file.in > output_file.out"
The following command reads the file "input_file.in" and redirects it to pw.x

as if you were typing it in the terminal. Then, the standard output is redirected
to a file called "output_file.out", so that you can read it.

If you set up a multiprocessor environment you can type
"mpirun -np N pw.x input_file.in > output_file.out"
where N is the number of cores in your machine (typically 2 or 4).

4.1 Understanding the calculation
In section 2 we saw that with the Kohn and Sham picture we can represent
our system of N interacting electrons in terms of N noninteracting electrons in
an external, self consistent potential, and that this gives rise to a Schrödinger’s
equation that can be solved numerically. There are some extra details which are
needed to understand all the parameters that one has to set up into the input
file.

First and foremost, we consider all of our DFT calculations to be done in
a solid, i.e. a system with discrete translational invariance. This implies that
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we can use the Bloch theorem. The advantages of using the Bloch theorem are
two:

1. The Hamiltonian is diagonal in ~k

2. All the calculations can be restricted to a single unit cell

Using Bloch theorem, equation 3 is expressed in the Bloch basis, and defines
the dispersion relationship ε~k(

− ~2

2m
(
1

i
∆ + ~k)2 + vscf (~r)

)
u~k(~r) = ε~ku~k(~r) (4)

where ~k is a wave vector belonging to the first Brillouin zone and vscf and
u~k(~r) are lattice-periodic functions. This equation should look familiar. If it is
not, I recommend you to read chapter 8 of Aschroft and Mermin’s "Solid State
Physics" [4]. This equation is saying that not only we can solve a single particle
equation, we can also solve it for different values of ~k, as the Hamiltonian is
already diagonal in ~k. For each given ~k we will get a set of εi(~k), which is our
dispersion relationship.

4.1.1 Energy Cutoff

Equation 4 is still a second order differential equation, which needs to be solved
numerically. The easiest way to do it is the following: instead of directly solving
the solution, we can expand the wave function u~k(~r) as a sum of basis set
functions, weighed with a coefficient. Then the correct solution is found if one
finds the right coefficients, i.e. if one solves a linear system, which is much easier
to do in a machine. In principle one has to consider an infinite sum of basis
set functions. In practice, one has to truncate the expansion, including enough
basis functions to describe all the physics correctly. In Quantum Espresso the
expansion is done in terms of plane waves, which have several advantages.

In the code, the number of plane waves included in the calculation is ex-
pressed as a cutoff energy (ecutwfc in the input file). The higher the cutoff
energy, the more plane waves (but also the slower the calculation). The optimal
cutoff mostly depends on the element and the size of the cell, and little on the
chemical environment. In order to check which cutoff is right for your system,
you should run a calculation with different values of the energy cutoff, until the
total energy converges, i.e. the difference between the total energy, calculated
with two different cutoff energies is smaller than the required accuracy (typi-
cally 1 meV/atom) The total energy cutoff depends on the elements included
in your calculations, and it is bound by the element which requires the highest
cutoff. With a cutoff of 60-80 Ry you should be safe for all elements, but I do
recommend checking for convergence, as with some elements need a much lower
cutoff.
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4.1.2 Pseudopotential

The number of plane waves required can be reduced dramatically by the use
of a pseudopotential. In short, a pseudopotential is a modification of the ionic
potential which allows one to greatly reduce the number of plane waves needed,
without changing the chemical properties of the atoms. There is an incredibly
large variety of pseudopotentials, which mostly has to do with the method used
to generate it. The potentials recommended on the website of QE are usually
all reliable, but unless you know what you’re doing use them at your own risk.

I recommend the Optimized Norm Conserving Vanderbilt (ONCV) poten-
tials. You can find a database in the .UPF format (used by Quantum Espresso)
at this address http://www.quantum-simulation.org/potentials/sg15_oncv/
with almost all elements. These potentials are rather costly (they require a high
energy cutoff) but the are very robust.

4.1.3 Brillouin zone sampling

In the previous section we saw that equation 4 can be solved for a given ~k. Many
electronic and thermodynamic properties of the solid, however, depend on the
dispersion relationship ε~k over the whole Brillouin zone (i.e. for all possible
values of ~k in the first BZ). In principle there are infinitely many ~k. In practice
what the code does is sampling the first BZ (which is a 3D solid) with a discrete
grid.

The number of points needed in the grid depends on several factors, and it
is not obvious to decide how many to use. In particular, not many k-points are
needed for the ground state charge density, but a lot are needed for the density
of states. In the next sections we’ll see some guidelines on a case-by-case basis.

In order to reduce the number of ~k points needed, the code typically intro-
duces a smearing on the occupations, such as the Fermi function at T 6= 0, or a
Gaussian broadening. Imagine that for every sum involving δ functions, we sum
over a Gaussian instead. This helps to greatly speed up convergence. Values
between 0.01 and 0.08 Ry are reasonable for the self-consistent calculation. The
larger the smearing, the less the ~k points needed, and the faster the calculation.
Values too large, however, may give wrong results, especially in semiconductors
where the conduction band may become occupied. As a first guess, try with
0.05 Ry.

4.1.4 Phonon calculations

Phonon calculations are possible within an extension of DFT called Density
Functional Perturbation Theory (DFPT). The process is, in principle, quite
simple, and it was outlined during the course. First, the equilibrium positions of
the atoms have to be calculated. Then, using the harmonic approximation, the
linear spring constants are calculated. For an in-depth overview I recommend
you ref. [5], for details on the calculations see section 5.4.
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5 Input files, explained
Note: you can also find the input files here [3].

5.1 The must-do calculation (ground state charge density)
This is the first step for any calculation you want to do. You need to set the
structure in your input file, then a few more parameters, and run the pw.x code.
A complete reference of all the parameters for the input file can be found at
https://www.quantum-espresso.org/Doc/INPUT_PW.html. Also have a look
at the sample input files that follow each section Note: in the input files the
exclamation mark is used for comments.

The most starting point is setting up the atomic positions correctly. Follow
this workflow, and don’t give up if you cannot make it at first try (it takes some
practice).

1. Look up the structure in a reference, you will need the space group and
the Wyckoff positions. The ".cif" files also contain this information.

2. Look up in Wikipedia which Bravais lattice corresponds to your space
group (https://en.wikipedia.org/wiki/List_of_space_groups). For
instance, space group 71 (or Immm) is a body-centered orthorhombic.
Note: for our purpose it is important to check whether it is simple, face-
centered, etc.

3. Look up in the input guide (https://www.quantum-espresso.org/Doc/
INPUT_PW.html) at the keyword "ibrav" which number corresponds to
your lattice type

4. The "ibrav" instructions also contains useful information on which cell
parameters you will need to input (e.g. for a cubic you only need to
input one lattice parameter, for a tetragonal you need to input two, for a
monoclinic you need three lattice parameters and an angle, and so on)

5. Provide the cell parameters in the input file. The three axes are called a,
b and c, and the angles between them α, β and γ

6. Note: The format might be not intuitive. The first cell parameter (celldm(1))
has to be in Bohr. Then celldm(2) and celldm(3), if needed, have to be ex-
pressed as the ratio b/a and c/a, respectively. Finally, celldm(4), celldm(5)
and celldm(6), if needed, are the cosine of the angles α, β and γ

7. Add the atomic coordinates (see below)

There are mostly two methods to provide the atomic coordinates. Usually
in literature only the inequivalent positions of atoms are given, and the full
structure has to be reconstructed by symmetry operations (or a program that
does it for you). The same is true also for crystallographic information files
(".cif"). The first method is to directly add the space group in the input file
("space_group = ###"), and then only give the inequivalent positions for the
atoms, with their Wyckoff position. The second method is to use a software
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like VESTA to reconstruct the cell, and then export it in a format where all
the coordinates are explicitly given (such as ".vasp" extension), and the cell
is described by the three lattice vectors. With symmetric structures the first
method is usually very easy and fast, while the second is more automatic for
structures with low symmetry.

Note: in the input file you have to specify the "number of atoms" in the cell.
Actually, when you use the first method you need to specify only the number of
atoms given in input (which is going to be less, as the others are generated by
symmetry!)

In the output file of the self consistent calculation, an estimate for the Fermi
energy will be given. Look into the output file (or into the standard output) for
the keyword "Fermi" (capital F is important). Alternatively, if you redirected
the standard output to a file, you can type from the terminal "grep ’Fermi’
output_file_name". Note that this number makes sense only in a metal. In an
insulator the code will still print a "Fermi energy", which has no meaning, not
even the chemical potential.

5.1.1 Example, method 1

In a paper the information on the crystal structure would look like this ([9, 6])

Space group: 225 (Fm− 3m)
Atom Wyckoff position Coordinates
Cu 4a (0,0,0)

The position of the atoms, given this symmetry, do not require to specify any
coordinates (there is no free parameter). This can be checked by visiting again
the Bilbao Crystallographic Server at the subpage for Wyckoff positions (http:
//www.cryst.ehu.es/cryst/get_wp.html). The page requires the input of the
space group, and returns all the Wyckoff positions for that space group, with
the specification of which coordinates are fixed by symmetry, and which have
to be given. See a sample input file in the next page.
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5.1.2 Example, method 2

We can reconstruct the above crystal structure in a program like VESTA, and
export it into the ".vasp" format, which looks as follows:

The first three vectors are the lattice vectors (in Å). Then, there is a line
expressing to which element each line refers to, and last there are the atomic
coordinates, in units of the lattice vectors. Note that in this case the number
of atoms written in the input file reflects the number of atoms in the unit cell.
The input file is below.
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&control ! Input file is divided in sections, depending on the
variables affected. This mostly affects file i/o and cal-
culation type.

calculation = ’scf’ ! Which type of calculation has to be performed (scf =
self consistent field)

outdir = ’./output’ ! Path to the folder to store the output files. The next
calculations will have to read into this folder, so check
that the path is correct

pseudo_dir = ’/home/simonedicataldo/QE-pseudopotentials/’
prefix = ’Cu’ ! It’s a label for the calculation. Has to be the same

when you read into the output folder in a subsequent
calculation.

tstress = .true. ! Calculates and prints the stress tensor (if .true.)
tprnfor = .true. ! Calculates and prints the forces acting on each atom

(if .true.)
forc_conv_thr = 1e-5
&end

&system
ibrav = 2 ! Explained above. 6 is for simple tetragonal, 2 is for

fcc and so on
celldm(1) = 6.90 ! Units for celldm(1) are Bohr (1 Bohr ≈ 1.89 Å)
space_group = 225 ! Space group number. Needed in order to input coor-

dinates using Wyckoff positions
nat = 1 ! Number of atoms in the atomic coordinates
ntyp = 1 ! How many different atomic species there are
! nbnd = 16 ! You can change the number of bands included, but

be careful, there have to be a few more than half the
number of electrons

ecutwfc = 120 ! Very important! Cutoff energy on the plane waves
expansion.

occupations = ’smearing’ ! Using a smearing on the occupations so that we need
less k points

smearing = ’mp’ ! Type of smearing
degauss = 0.02 ! Width of smearing (in Ry)
&end
&electrons
conv_thr = 1.D-8 ! Convergence threshold on scf calculation
&end
&ions ! Ignored in scf calculations, only used in "relax" and

"vc-relax" calculations
ion_dynamics = ’bfgs’
&end
&cell ! Ignored in scf calculations, only used in "vc-relax"

calculations
cell_dynamics = ’bfgs’
press = 0 ! Pressure to be applied to the cell for high-pressure

calculations. It is in kilobar (1 kB = 0.1 GPa)
&end
ATOMIC_SPECIES
Cu 63.54 Cu_ONCV_PBE_sr.upf

ATOMIC_POSITIONS crystal_sg ! The crystal_sg command is used to determine the
atomic positions from Wyckoff positions

Cu 4a ! Since the position of Cu is determined unequivocally
from the Wyckoff positions, no coordinates should be
written

K_POINTS automatic
4 4 4 0 0 0 ! The first three numbers determine how many ~k points

in each direction have to be used.
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New structure
1.0
3.5999999046 0.0000000000 0.0000000000
0.0000000000 3.5999999046 0.0000000000
0.0000000000 0.0000000000 3.5999999046
Cu
4
Direct
0.000000000 0.000000000 0.000000000
0.000000000 0.500000000 0.500000000
0.500000000 0.000000000 0.500000000
0.500000000 0.500000000 0.000000000

5.2 Band structure
In order to calculate the bands in a way that can give a nice plot, one has to
calculate the eigenvalues of the equation (4) for a specific set of values of ~k. In
particular, we want to construct a path in ~r space which connects all the high
symmetry points of the Brillouin zone, and then calculate ε~k for this path. Note
that this approach can not come out of a self-consistent calculation, because
here we are only sampling a line into a 3D space. What we can do is

1. Perform a self-consistent calculation to get the correct ground state charge
density and self-consistent potential (see 5.1)

2. Solve equation (4) with the potential obtained in the previous calculation
on the desired path in ~k space

3. This is done by using "pw.x", selecting "bands" as the type of calculation,
and giving the path in the Brillouin zone as input

4. Collect the result of the previous calculation into a data file

5. Done by the simple script "bands.x". It produces a file with the extension
".gnu" which contains the linearized path (in units of 2π

a ) in ~k space on the
first column, and the corresponding energy (in eV) on the second column.

The high-symmetry points in the Brillouin zone depend on the space group
of our system. Once the coordinates of these points are known, the path is
automatically generated by QE by using a special option in the k-points set-
ting (crystal_b, for crystal coordinates), which only requires the coordinates of
the special points and the number of intermediate points between each special
point. These coordinates can be obtained by visiting the Bilbao Crystallographic
Server (http://www.cryst.ehu.es/cryst/get_kvec.html) and entering the
space group number of our system. Here the coordinates and names of the
high-symmetry points are given, as well as a 3D representation of the BZ. As a
rule of thumb, you want to figure out a path which visit all the high-symmetry
points via high-symmetry lines, without passing along the same line twice.
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5.2.1 Example, part 1

First run a self-consistent calculation (see "The must-do calculation", section
5.1). Then run pw.x again with the "bands" option (solve Schrödinger’s equa-
tion on a given path in reciprocal space). A sample input file is in the next
page
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5.2.2 Example, part 2

Then collect the result running the script "bands.x" The output, "Cu.bands.gnu’
contains the plottable data!

17



5.3 Density of states
Mathematically the energy dependent density of states is obtained from the
dispersion relationship ε(~k) using the formula

dos(ε) =

∫
d3k

(2π)3
δ(ε− ε(~k)) (5)

The above formula is mathematically sound, but not directly applicable in a
computational algorithm. In fact, the sum on the left is obtained as an infinite
sum of infinitely narrow functions (the δ functions). In practice one either
substitutes the δ functions with a function of finite width (like a gaussian), or
uses an interpolation method (the tetrahedron method). For the purpose of
calculating the density of state, the tetrahedron method is by far more efficient,
although it still needs a large number of ~k points in order to give a smooth
density of states.

There is a trick which allows one to use a very fine grid of ~k points without too
much computational effort. The trick exploits the fact that the self-consistent
potential and the ground state charge density need a relatively small number of
~k points to converge. It works as follows

1. Perform a self-consistent calculation to get the correct ground state charge
density and self-consistent potential (see 5.1). Here you do not need a lot
of ~k points. As a result, you will obtain the correct self-consistent potential
and charge density.

2. Perform a non-self-consistent calculation, which starts from the potential
obtained in the previous step. Now you will use the tetrahedron method,
and a large number of ~k points. This can be done using the "pw.x" code,
selecting a calculation of type "nscf", occupation "tetrahedra", and a fine
~k grid

3. Collect the results using the "dos.x" script. It outputs a dos file, which is
a three columns file containing the energy on the first column, the density
of states (states/eV) on the second column, and the integral of the density
of states on the third column.

The method discussed above is much faster, as equation (4) on the fine ~k grid
only needs to be solved once!
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5.3.1 Example, part 1

First run a self-consistent calculation (see "The must-do calculation", section
5.1). Then, run pw.x again, with the option "nscf", using the tetrahedron
method for occupations, and a much denser ~k grid.
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5.3.2 Example, part 2

Once the non self consistent calculation has finished, run the "dos.x" script to
collect the results. See the sample input file in the next page. This will produce
a plottable file called "Cu.dos.dat".
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5.4 Phonons
The calculation of phonon dispersions requires several steps and, in general, it
takes much longer than a self-consistent calculation. It is articulated in the
following steps:

1. Check that the ions are in their equilibrium positions! Forces should be
close to zero, stress tensor should be diagonal, and all diagonal components
should be the same (homogeneous pressure). You may want to use the
’relax’ option (see 5.1). Since we want to perturb the atomic positions
w.r.t. equilibrium, we first want to make sure that the atomic positions
are at equilibrium, i.e. each component of the force acting on atoms is of
the order of (or less than) 1 meV/atom.

2. Calculate the ground state charge density with the equilibrium positions
of the ions (see 5.1).

3. Calculate the dynamical matrices in reciprocal space on a grid (using
ph.x). 3 In this step the code performs a small displacement of the
atoms, and calculates the resulting perturbation on the potential and on
the charge density. Within linear response theory (see [5]) the dynamical
matrices are calculated. The strength of QE lies in the fact that the
dynamical matrices are calculated directly in reciprocal space, therefore
there is no need of constructing a supercell.

4. Calculate the force constants from reciprocal to real space (using q2r.x),
which simply means that a Fourier transform is performed, from the dy-
namical matrix (reciprocal space), to the force constant matrix (real space)

5. Interpolate on a dense grid in reciprocal space to calculate phonon density
of states (using matdyn.x)

6. Interpolate on a line in reciprocal space to calculate phonon dispersion
relationship (using matdyn.x)

The last two points are the so-called Fourier interpolation. Imagine we have
a function F (~q) which is calculated in reciprocal space on a finite grid ~qi. We
can calculate the inverse-Fourier transform f(~r) = 1

(2π)3

∑N
i=1 F (~qi)e

i~qi~r. Even
if our grid contains a few points, we can perform this Fourier transform for
an arbitrarily dense ~r grid. Then if we want to know F (~q) at a specific ~q, we
just need to calculate the Fourier transform F (~q) =

∑
~r f(~r)e−i~q~r. This kind

of interpolation is much more efficient than directly interpolating in reciprocal
space, so that reasonable phonon dispersions can be obtained with very small
grids.

The dynamical matrices calculated by ph.x are the Fourier transform of the
force constant matrix (the linear spring system between atoms in real space).
This allows one to calculate the perturbations to the atomic positions without

3Note: this grid has nothing to do with the ~k grid of the scf calculation, except that it
samples the same Brillouin zone.
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the need of a supercell to describe long-wavelength modes. In order to get
the phonon dispersions one uses the tool q2r.x to transform these dynamical
matrices into the force constant matrix (which is defined in real space). Then
the force constant matrix can be either read by an external tool, or read by the
built-in tools of Quantum Espresso. The tool matdyn.x reads the interatomic
force constant matrix to calculate the dynamical matrix at a given point in
reciprocal space. The points can be defined on a fine grid (to calculate the
phonon density of states) or on a path between high-symmetry points in the
Brillouin zone (to plot the phonon dispersions).

5.4.1 Example, part 1 - calculate dynamical matrices

First perform a self-consistent calculation (see 5.1). Try to optimize the pa-
rameters so that the self consistent calculation is fast (less than two or three
minutes) or the phonon calculation will take a very long time.

Execute the code ph.x

5.4.2 Example, part 2 - calculate interatomic force constant

Execute the code q2r.x (it reads the files in the folder where it is executed).
An explanation of the contents of the fc file can be found at [1]. This is only

needed if you want to use your own tools to read it.

5.4.3 Example, part 3 - calculate the phonon density of states

Now we can read the interatomic force constant file to calculate the phonon
density of states. Run matdyn.x with the flag ’dos = .true.’. A file named
"matdyn.dos" will be produced. The first column contains the energies (in
cm−1), while the second contains the dos (states/cm−1).

5.4.4 Example, part 4 - calculate the phonon dispersions

This produces a file named "Cu.phbands.gp" which contains a gnuplot-friendly
data structure which you can plot. Note: the first column contains the energies
(in cm−1), while the n following columns contain a phonon branch each.

If one or more of your modes display negative frequencies, it means that your
system is dynamically unstable. This may have a few different causes. It might
be because of an actual physical instability, but more likely your calculation
is not converged (try using a larger smearing) or the atoms in your unit cell
are not at their equilibrium positions (check that the forces between atoms are
less than 10−4 Ry/au and that the stress tensor is diagonal and all diagonal
elements are equal).
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6 Example: result
Using the input files and the pseudopotentials provided, you should in the end
obtain this band structure and density of states. This plot was made using
xmgrace, but you can use any plotting tool you’re comfortable with.
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Figure 1: Left panel: band structure calculation for the face centered cubic
phase of Cu. Right panel: density of states.
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Below we can see the phonon dispersions and phonon density of states for
the fcc phase. Note that in Γ three frequencies go to zero, as expected.
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Figure 2: Left panel: Phonon dispersion for the face centered cubic phase of
Cu. Right panel: phonon density of states.
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&control ! Input file is divided in sections, depending on the
variables affected. This mostly affects file i/o and cal-
culation type.

calculation = ’scf’ ! Which type of calculation has to be performed (scf =
self consistent field)

outdir = ’./output’ ! Path to the folder to store the output files. The next
calculations will have to read into this folder, so check
that the path is correct

pseudo_dir = ’/home/simonedicataldo/QE-pseudopotentials/’
prefix = ’Cu’ ! It’s a label for the calculation. Has to be the same

when you read into the output folder in a subsequent
calculation.

tstress = .true. ! Calculates and prints the stress tensor (if .true.)
tprnfor = .true. ! Calculates and prints the forces acting on each atom

(if .true.)
forc_conv_thr = 1e-5
&end

&system
ibrav = 0 ! Explained above. 6 is for simple tetragonal, 2 is for

fcc and so on
celldm(1) = 6.90 ! Units for celldm(1) are Bohr (1 Bohr ≈ 1.89 Å)
nat = 4 ! Number of atoms in the atomic coordinates
ntyp = 1 ! How many different atomic species there are
! nbnd = 16 ! You can change the number of bands included, but

be careful, there have to be a few more than half the
number of electrons

ecutwfc = 120 ! Very important! Cutoff energy on the plane waves
expansion.

occupations = ’smearing’ ! Using a smearing on the occupations so that we need
less k points

smearing = ’mp’ ! Type of smearing
degauss = 0.02 ! Width of smearing (in Ry)
&end
&electrons
conv_thr = 1.D-8 ! Convergence threshold on scf calculation
&end
&ions ! Ignored in scf calculations, only used in "relax" and

"vc-relax" calculations
ion_dynamics = ’bfgs’
&end
&cell ! Ignored in scf calculations, only used in "vc-relax"

calculations
cell_dynamics = ’bfgs’
press = 0 ! Pressure to be applied to the cell for high-pressure

calculations. It is in kilobar (1 kB = 0.1 GPa)
&end
ATOMIC_SPECIES
Cu 63.54 Cu_ONCV_PBE_sr.upf

CELL_PARAMETERS angstrom 3.5999999046 0.0000000000 0.0000000000
0.0000000000 3.5999999046 0.0000000000
0.0000000000 0.0000000000 3.5999999046
ATOMIC_POSITIONS crystal ! Crystal coordinates
Cu 0.000000000 0.000000000 0.000000000
Cu 0.000000000 0.500000000 0.500000000
Cu 0.500000000 0.000000000 0.500000000
Cu 0.500000000 0.500000000 0.000000000
K_POINTS automatic
4 4 4 0 0 0 ! The first three numbers determine how many ~k points

in each direction have to be used.
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Band structure calculation
&control ! Input file is divided in sections, depending on the

variables affected. This mostly affects file i/o and cal-
culation type.

calculation = ’bands’ ! Which type of calculation has to be performed (scf =
self consistent field)

outdir = ’./output’ ! Path to the folder to store the output files. The next
calculations will have to read into this folder

pseudo_dir = ’/home/simonedicataldo/QE-pseudopotentials/’
prefix = ’Cu’ ! It’s a label for the calculation. Has to be the same

when you read into the output folder in a subsequent
calculation.

&end
&system
ibrav = 2 ! Explained above. 6 is for simple tetragonal
celldm(1) = 6.90 ! Units for celldm(1) are Bohr (1 Bohr ≈ 1.89 Å)
space_group = 225 ! Space group number. Needed in order to input coor-

dinates using Wyckoff positions
nat = 1 ! Number of atoms in the atomic coordinates
ntyp = 1 ! How many different atomic species there are
! nbnd = 16 ! You can change the number of bands included, but

be careful, there have to be a few more than half the
number of electrons

ecutwfc = 120 ! Very important! Cutoff energy on the plane waves
expansion.

occupations = ’smearing’ ! Using a smearing on the occupations so that we need
less k points

smearing = ’mp’ ! Type of smearing
degauss = 0.04 ! Width of smearing (in Ry)
&end
&electrons
conv_thr = 1.D-8 ! Convergence threshold on scf calculation
&end
ATOMIC_SPECIES
Cu 65 Cu_ONCV_PBE_sr.upf
ATOMIC_POSITIONS crystal_sg ! The crystal_sg command is used to determine the

atomic positions from Wyckoff positions
Cu 4a
K_POINTS crystal_b
6
0 0 0 50
!Gamma 0.5 0 0.5 50
!X 0.5 0.25 0.75 50
!W 0.5 0.5 0.5 50
!L 0 0 0 50
!Gamma 0.5 0 0.5 50
!X
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&bands
prefix = ’Cu’ Prefix which has to match that of the previous calcula-

tions
outdir = ’./output’ Output folder in which data has to be read
filband = ’Cu.bands’ ! Name of the file with plottable data
&end
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Non self consistent calculation
&control ! Input file is divided in sections, depending on the

variables affected. This mostly affects file i/o and cal-
culation type.

calculation = ’nscf’ ! Which type of calculation has to be performed (scf =
self consistent field)

outdir = ’./output’ ! Path to the folder to store the output files.
pseudo_dir = ’/home/simonedicataldo/QE-pseudopotentials/’
prefix = ’Cu’ ! It’s a label for the calculation. Has to be the same

when you read into the output folder in a subsequent
calculation.

tstress = .true. ! Calculates and prints the stress tensor (if .true.)
tprnfor = .true. ! Calculates and prints the forces acting on each atom

(if .true.)
&end
&system
ibrav = 2 ! Explained above. 6 is for simple tetragonal
celldm(1) = 6.9 ! Units for celldm(1) are Bohr (1 Bohr ≈ 1.89 Å)
space_group = 225 ! Space group number. Needed in order to input coor-

dinates using Wyckoff positions
nat = 1 ! Number of atoms in the atomic coordinates
ntyp = 1 ! How many different atomic species there are
! nbnd = 16 ! You can change the number of bands included, but

be careful, there have to be a few more than half the
number of electrons

ecutwfc = 120 ! Very important! Cutoff energy on the plane waves
expansion.

occupations = ’tetrahedra’ ! Using a smearing on the occupations so that we need
less k points

&end
&electrons
conv_thr = 1.D-8 ! Convergence threshold on scf calculation
&end
&ions ! Ignored in scf calculations, only used in "relax" and

"vc-relax" calculations
ion_dynamics = ’bfgs’
&end
&cell ! Ignored in scf calculations, only used in "vc-relax"

calculations
cell_dynamics = ’bfgs’
press = 0 ! Pressure to be applied to the cell for high-pressure

calculations. It is in kilobar (1 kB = 0.1 GPa)
&end
ATOMIC_SPECIES
Cu 63.54 Cu_ONCV_PBE_sr.upf
ATOMIC_POSITIONS crystal_sg ! The crystal_sg command is used to determine the

atomic positions from Wyckoff positions
Cu 4a ! Since the position of Ba is determined unequivocally

from the Wyckoff positions, no coordinates should be
written

K_POINTS automatic
32 32 32 0 0 0 ! The first three numbers determine how many ~k points

in each direction have to be used.
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&dos
prefix = ’Cu’
outdir = ’./output’
Emin = -20 ! Starting energy for integration
Emax = 50 ! Final energy for integration
DeltaE = 0.1 ! Energy grid step
fildos = ’Cu.dos.dat’
&end

&inputph
outdir = ’./output’
prefix = ’Cu’
ldisp = .true. ! Calculate dynamical matrices on a grid in reciprocal

space
fildyn = ’Cu.dyn’ ! Prefix for the name of dynamical matrices
nq1 = 2, ! Defining a grid of points in reciprocal space to calculate

dynamical matrices
nq2 = 2, ! The choice depends on the size and shape of your cell
nq3 = 2, !
&end

&input
fildyn = ’Cu.dyn’ ! Prefix for the name of dynamical matrices
flfrc = ’Cu.fc’ ! Name of interatomic force constant matrix file
&end

&input
flfrc = ’Cu.fc’ ! Force constant file
asr = ’crystal’ ! Acoustic sum rule to apply to acoustic modes in gamma
dos = .true. ! Flag to calculate density of states
nk1 = 8, nk2 = 8, nk3 = 8 ! Grid to integrate density of states
deltaE = 1 ! Energy step, in cm-1
&end
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&input
flfrc = ’Cu.fc’ ! Interatomic force constant file
q_in_band_form = .true. ! If this option is true, then the points should be provided

below
q_in_cryst_coord = .true. Note: the points are given in the exact same way as a

band structure calculation
flfrq = ’Cu.phbands’ ! Name of the output file
&end
6 ! Number of different points given (in crystal coordinates)
0 0 0 50 !Gamma
0.5 0 0.5 50 !X
0.5 0.25 0.75 50 !W
0.5 0.5 0.5 50 !L
0 0 0 50 !Gamma
0.5 0 0.5 50 !X
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