In the Debye model, the dispersion relation is linear, ω = c|k|, and the density of states is quadratic as it is in the long wavelength limit.
$$D(\omega )= \frac{3\omega^2}{2\pi^2 c^3}\quad \text{[s rad}^{-1}\text{ m}^{-3}\text{]}.$$Here c is the speed of sound. This holds up to a maximum frequency called the Debye frequency ωD. In three dimensions there are 3 degrees of freedom per atom so the total number of phonon modes is 3n.
$$3n=\int\limits_0^{\omega_D}D(\omega)d\omega.$$Here n is the atomic density. There are no phonon modes with a frequency above the Debye frequency. The Debye freqency is $\omega_D^3 = 6\pi^2nc^3$.
The form below generates a table of where the first column is the angular frequency ω in rad/s and the second column is the density of states D(ω) in units of s/(rad m³).
  | 
Material  | Speed of sound [m/s]  | Atom density [m-3]  | Debye frequency [rad/sec]  | 
aluminum  | 6320  | 6.03×1028  | 9.66×1013  | 
copper  | 4660  | 8.47×1028  | 7.98×1013  | 
diamond  | 18000  | 17.70×1028  | 39.39×1013  | 
gold  | 3240  | 5.91×1028  | 4.92×1013  | 
lead  | 2160  | 3.30×1028  | 2.70×1013  | 
ice(-4C)  | 3280  | 3.07×1028  | 4.00×1013  | 
zinc  | 4170  | 6.57×1028  | 6.56×1013  | 
titanium  | 6100  | 5.66×1028  | 9.13×1013  | 
tin  | 3320  | 3.69×1028  | 4.31×1013  | 
silicon  | 9620  | 4.99×1028  | 13.81×1013  | 
nickel  | 5630  | 9.14×1028  | 9.88×1013  | 
iron oxide(magnetite)  | 5890  | 1.34×1028  | 5.45×1013  | 
tungsten  | 5180  | 6.42×1028  | 8.08×1013  | 
zirconium  | 4650  | 4.34×1028  | 6.37×1013  | 
molybdenum  | 6250  | 6.39×1028  | 9.74×1013  | 
beryllium  | 12900  | 12.29×1028  | 25.01×1013  | 
The density of states can be used to calculate the temperature dependence of thermodynamic quantities.
The energy spectral density is,
$$u(\omega) = \frac{3\omega^2}{2\pi^2 c^3}\frac{\hbar\omega}{\exp\left(\frac{\hbar\omega}{k_BT}\right) -1}.$$In the high temperature limit, the exponential factor can be expanded as $\exp\left(\frac{\hbar\omega}{k_BT}\right)\approx 1 + \frac{\hbar\omega}{k_BT}$. The energy spectral density then becomes,
$$u(\omega) = \frac{3\omega^2}{2\pi^2 c^3}k_BT.$$This can be integrated to yield the internal energy density,
$$u = \frac{\omega_D^3}{2\pi^2 c^3}k_BT= 3nk_BT.$$The specific heat has the Dulong-Petit form,
$$c_v = 3nk_B.$$