Menu Outline Exercise Questions Appendices Lectures Student Projects Books Sections Introduction Atoms Molecules Crystal Structure Crystal Diffraction Crystal Binding Photons Phonons Electrons Band Model Crystal Physics Semiconductors

PHY.K02UF Molecular and Solid State Physics

Phonon dispersion of a simple cubic crystal

We consider a simple cubic crystal with one atom in the basis. The primitive lattice vectors are,

$$\vec{a}_1=a\,\hat{x},\quad \vec{a}_2=a\,\hat{y},\quad\vec{a}_3=a\,\hat{z}.$$

Each atom has 6 nearest neighbors and 12 next-nearest neighbors. Let $u^x_{l,m,n}$ the displacement of an atom in the unit cell at position $\vec{r}=l\vec{a}_1+m\vec{a}_2+n\vec{a}_3$ in the $x$-direction from its equilibrium position. If the restoring force that pushes the atoms back to their equilibrium positions is modelled with linear springs with spring constants $C_{1}$ for nearest neighbors and $C_{2}$ for next-nearest neighbors, then the equations of motion for the atoms are,

$$\begin{split} M \frac {d^{2}u^{x}_{lmn}}{dt^{2}} & = C_1\left( \left(u^{x}_{(l+1)mn} - u^{x}_{lmn}\right)+\left(u^{x}_{(l-1)mn} - u^{x}_{lmn}\right)\right)\\ &+\frac{C_2}{2} \Big[\left(u^{x}_{(l+1)(m+1)n} - u^{x}_{lmn}\right)+\left(u^{x}_{(l+1)(m-1)n} - u^{x}_{lmn}\right)+ \left(u^{x}_{(l-1)(m+1)n} - u^{x}_{lmn}\right)+ \left(u^{x}_{(l-1)(m-1)n} - u^{x}_{lmn}\right)\\ &+\left(u^{x}_{(l+1)m(n+1)} - u^{x}_{lmn}\right)+\left(u^{x}_{(l+1)m(n-1)} - u^{x}_{lmn}\right)+ \left(u^{x}_{(l-1)m(n+1)} - u^{x}_{lmn}\right)+ \left(u^{x}_{(l-1)m(n-1)} - u^{x}_{lmn}\right)\\ &+\left(u^{y}_{(l+1)(m+1)n} - u^{y}_{lmn}\right)+\left(u^{y}_{(l+1)(m-1)n} - u^{y}_{lmn}\right)+ \left(u^{y}_{(l-1)(m+1)n} - u^{y}_{lmn}\right)+ \left(u^{y}_{(l-1)(m-1)n} - u^{y}_{lmn}\right)\\ &+\left(u^{z}_{(l+1)m(n+1)} - u^{z}_{lmn}\right)+\left(u^{z}_{(l+1)m(n-1)} - u^{z}_{lmn}\right)+ \left(u^{z}_{(l-1)m(n+1)} - u^{z}_{lmn}\right)+ \left(u^{z}_{(l-1)m(n-1)} - u^{z}_{lmn}\right)\Big] \end{split}$$

There are similar equations for the displacements in the $y-$ and $z-$directions. The normal modes must be eigenfunctions of the symmetry of the system. Because of the translational symmetry of the crystal, the normal modes must have the form,

$$\vec{u}_{l,m,n}=\vec{u}_{\vec{k}}\exp\left( i(lk_xa+mk_ya+nk_za)\right).$$

Substituting this form for the normal modes into the equations of motion above results in a set of algebraic equations that can be written in matrix form,

$$\frac{M}{C_1}\omega^2\vec{u}_{\vec{k}}= \textbf{m} \vec{u}_{\vec{k}},$$

where the elements of the matrix $\textbf{m}$ are:

$$m_{11} = 2\left(1-\cos(k_xa)\right)+2\frac{C_2}{C_1}\left(2-\cos(k_xa)\cos(k_ya)-\cos(k_xa)\cos(k_za)\right)$$ $$m_{12} = m_{21} = 2\frac{C_2}{C_1}\sin(k_xa)\sin(k_ya)$$ $$m_{13} = m_{31} = 2\frac{C_2}{C_1}\sin(k_xa)\sin(k_za)$$ $$m_{22} = 2\left(1-\cos(k_ya)\right)+2\frac{C_2}{C_1}\left(2-\cos(k_xa)\cos(k_ya)-\cos(k_ya)\cos(k_za)\right)$$ $$m_{23} = m_{32} = 2\frac{C_2}{C_1}\sin(k_ya)\sin(k_za)$$ $$m_{33} = 2\left(1-\cos(k_za)\right)+2\frac{C_2}{C_1}\left(2-\cos(k_xa)\cos(k_za)-\cos(k_ya)\cos(k_za)\right)$$

The eigenvalues $\lambda = \frac{M\omega^2}{C_1}$ can be found by setting the determinant equal to zero, $|\textbf{m} -\lambda \textbf{I}| = 0$.

This can be written as a cubic equation in $\lambda$.

$$-\lambda^3 +(m_{11}+m_{22}+m_{33})\lambda^2+(m_{12}^2+m_{13}^2+m_{23}^2 - m_{11}m_{22} - m_{11}m_{33} - m_{22}m_{33})\lambda + m_{11}m_{22}m_{33} +2m_{12}m_{13}m_{23} - m_{12}^2m_{33} - m_{13}^2m_{22}-m_{23}^2m_{11} =0$$

Cubic equations can be solved using Cardano's formula. The standard form of a cubic equation is,

$$a\lambda^3 + b\lambda^2 + c\lambda + d =0$$

Code that will calculate the coefficients $a,b,c,d$ and the matrix elements from the $\vec{k}$-vector is,

$k_xa=$  $k_ya=$  $k_za=$   $\frac{C_2}{C_1} =$

 $\sqrt{\frac{M}{C_1}}\omega =$

 $\Gamma: 0,0,0$ $X: \pi/a,0,0$ $M: \pi/a,\pi/a,0$ $R: \pi/a,\pi/a,\pi/a$