Einstein assumed that all of the 3N normal modes of a crystal containing N atoms have the same frequency ω0. This is not a good model for the dispersion relation but it does a reasonable job in describing the specific heat. |
Debye used the long wavelength limit where the density of states increases like ω² up to a cut-off frequency where the density of states is assumed to abruptly go to zero. The cut-off is chosen so that the total number of states is 3N. |
body centered cubic |
face centered cubic |
hexagonal close pack pdf Mathematica notebook |
||||||||||||||||
| Eigenfunction solutions |
|
|
|
|
|
|||||||||||||||
| Dispersion relation |
|
|
|
|
|
The dispersion relation can be expressed as the following determinant |
The dispersion relation can be expressed as the following determinant
|
|||||||||||||
| Density of states D(k) |
|
|
|
|
|
|
|
|
||||||||||||
| Density of states D(ω) |
|
|
|
|
|
|
|
|||||||||||||
| Energy spectra1 density |
|
|
|
|
|
|
|
|||||||||||||
| Internal energy |
|
|
$\large u\approx \frac{3\pi^4}{5}nk_B\frac{T^4}{\Theta_D^3}\quad\left[\text{J/m}^3\right]$ |
|
|
|
|
|||||||||||||
| Helmholtz free energy |
|
|
$\large f\approx -\frac{\pi^4}{5}nk_B\frac{T^4}{\Theta_D^3}\quad\left[\text{J/m}^3\right]$ |
|
|
|
|
|||||||||||||
| Entropy |
|
|
$\large s\approx \frac{4\pi^4}{5}nk_B\left(\frac{T}{\Theta_D}\right)^3\quad\left[\text{J K}^{-1}\text{m}^{-3}\right]$ |
|
|
|
|
|||||||||||||
| Specific heat |
|
|
$\large c_v\approx \frac{12\pi^4}{5}nk_B\left(\frac{T}{\Theta_D}\right)^3\quad\left[\text{J K}^{-1}\text{m}^{-3}\right]$ |
|
|
|
|
|||||||||||||