PHY.K02UF Molecular and Solid State Physics

Phonon dispersion of NaCl

Sodium chloride (NaCl) has an fcc Bravais lattice and there are two atoms in the basis. The primitive lattice vectors are,

\begin{equation} \vec{a}_1=\frac{a}{2}(\hat{x}+\hat{z}),\quad \vec{a}_2=\frac{a}{2}(\hat{x}+\hat{y}),\quad\vec{a}_3=\frac{a}{2}(\hat{y}+\hat{z}), \end{equation}

and the basis is Na (0,0,0) and Cl (0.5,0,0). Each Na atom has 6 nearest neighbor Cl atoms and 12 next-nearest neighbor Na atoms. Let $u^x_{lmn}$ the displacement of Na atom in the unit cell at position $\vec{r}=l\vec{a}_1+m\vec{a}_2+n\vec{a}_3$ in the $x$-direction from its equilibrium position and $v^x_{lmn}$ the displacement of Cl atom in the unit cell at position $\vec{r}=l\vec{a}_1+m\vec{a}_2+n\vec{a}_3$ in the $x$-direction from its equilibrium position. If the restoring force that pushes the atoms back to their equilibrium positions is modelled with linear springs with spring constants $C_{\text{Na-Cl}}$, $C_{\text{Na-Na}}$, and $C_{\text{Cl-Cl}}$. The simplest approximation is to connect only nearest neighbor atoms with linear springs. The equations of motion in this case are,

$$M_{\text{Na}} \frac {d^{2}u^{x}_{lmn}}{dt^{2}} = C_{\text{Na-Cl}}\left( -2 u^{x}_{lmn}+v^{x}_{lmn}+v^{x}_{(l-1)(m-1)(n+1)}\right),$$ $$M_{\text{Na}} \frac {d^{2}u^{y}_{lmn}}{dt^{2}} = C_{\text{Na-Cl}}\left( -2 u^{y}_{lmn}+v^{y}_{(l-1)m(n+1)}+v^{y}_{l(m-1)n}\right),$$ $$M_{\text{Na}} \frac {d^{2}u^{z}_{lmn}}{dt^{2}} = C_{\text{Na-Cl}}\left( -2 u^{z}_{lmn}+v^{z}_{(l-1)mn}+v^{z}_{l(m-1)(n+1)}\right),$$ $$M_{\text{Cl}} \frac {d^{2}v^{y}_{lmn}}{dt^{2}} = C_{\text{Na-Cl}}\left( -2 v^{x}_{lmn}+u^{x}_{lmn}+u^{x}_{(l+1)(m+1)(n-1)}\right),$$ $$M_{\text{Cl}} \frac {d^{2}v^{y}_{lmn}}{dt^{2}} = C_{\text{Na-Cl}}\left( -2 v^{y}_{lmn}+u^{y}_{l(m+1)n}+u^{y}_{(l+1)m(n-1)}\right),$$ $$M_{\text{Cl}} \frac {d^{2}v^{z}_{lmn}}{dt^{2}} = C_{\text{Na-Cl}}\left( -2 v^{z}_{lmn}+u^{z}_{l(m+1)(n-1)}+u^{z}_{(l+1)mn}\right).$$

These equations decouple into three cases of 1-d chains of atoms with two different masses. The resulting density of states contains van Hove singularities that are characteristic of one-dimensional systems but that is not expected for a three dimensional problem. For a better calculation of the phonon dispersion, the next nearest neighbors can be taken into account. The equations are,

\begin{equation} \begin{split} M_{\text{Na}} \frac {d^{2}u^{x}_{lmn}}{dt^{2}} & = \frac{C_{\text{Na-Na}}}{2}\Big[ (u^{x}_{(l+1)mn} - u^{x}_{lmn})+ (u^{x}_{(l-1)mn} - u^{x}_{lmn})+ (u^{x}_{l(m+1)n} - u^{x}_{lmn}) + (u^{x}_{l(m-1)n} - u^{x}_{lmn})\\ & + (u^{x}_{(l+1)m(n-1)} - u^{x}_{lmn})+ (u^{x}_{(l-1)m(n+1)} - u^{x}_{lmn})+ (u^{x}_{l(m+1)(n-1)} - u^{x}_{lmn})+ (u^{x}_{l(m-1)(n+1)}- u^{x}_{lmn})\\ & + (u^{y}_{l(m+1)n} - u^{y}_{lmn}) + (u^{y}_{l(m-1)n} - u^{y}_{lmn}) - (u^{y}_{(l+1)m(n-1)} - u^{y}_{lmn}) - (u^{y}_{(l-1)m(n+1)} - u^{y}_{lmn})\\ &+ (u^{z}_{(l+1)mn}- u^{z}_{lmn})+ (u^{z}_{(l-1)mn} - u^{z}_{lmn})-(u^{z}_{l(m+1)(n-1)} - u^{z}_{lmn})- (u^{z}_{l(m-1)(n+1)} - u^{z}_{lmn})\Big] \\ &+C_{\text{Na-Cl}}\left( -2 u^{x}_{lmn}+v^{x}_{lmn}+v^{x}_{(l-1)(m-1)(n+1)}\right), \end{split} \end{equation} \begin{equation} \begin{split} M_{\text{Na}} \frac {d^{2}u^{y}_{lmn}}{dt^{2}} &= \frac{C_{\text{Na-Na}}}{2}\Big[ (u^{y}_{l(m+1)n} - u^{y}_{lmn}) + (u^{y}_{l(m-1)n} - u^{y}_{lmn}) + (u^{y}_{(l+1)m(n-1)} - u^{y}_{lmn})+ (u^{y}_{(l-1)m(n+1)} - u^{y}_{lmn}) \\ &+ (u^{y}_{(l-1)(m+1)n} - u^{y}_{lmn}) + (u^{y}_{lm(n-1)} - u^{y}_{lmn}) + (u^{y}_{(l+1)(m-1)n} - u^{y}_{lmn}) + (u^{y}_{lm(n+1)} - u^{y}_{lmn})\\ &+ (u^{x}_{l(m+1)n} - u^{x}_{lmn}) + (u^{x}_{l(m-1)n} - u^{x}_{lmn}) - (u^{x}_{(l-1)m(n+1)} - u^{x}_{lmn}) - (u^{x}_{(l+1)m(n-1)} - u^{x}_{lmn}) \\ &+ (u^{z}_{lm(n-1)} - u^{z}_{lmn})+(u^{z}_{lm(n+1)} - u^{z}_{lmn}) - (u^{z}_{(l+1)(m-1)n} - u^{z}_{lmn})- (u^{z}_{(l-1)(m+1)n} - u^{z}_{lmn}) \Big]\\ & +C_{\text{Na-Cl}}\left( -2 u^{y}_{lmn}+v^{y}_{(l-1)m(n+1)}+v^{y}_{l(m-1)n}\right), \end{split} \end{equation} \begin{equation} \begin{split} M_{\text{Na}} \frac {d^{2}u^{z}_{lmn}}{dt^{2}} &= \frac{C_{\text{Na-Na}}}{2}\Big[ (u^{z}_{(l-1)mn} - u^{z}_{lmn})+ (u^{z}_{(l-1)l(m+1)n} - u^{z}_{lmn})+ (u^{z}_{l(m+1)(n-1)} - u^{z}_{lmn}) + (u^{z}_{lm(n-1)} - u^{z}_{lmn}) \\ &+ (u^{z}_{lm(n+1)} - u^{z}_{lmn})+ (u^{z}_{(l+1)mn} - u^{z}_{lmn})+ (u^{z}_{(l+1)(m-1)n} - u^{z}_{lmn})+ (u^{z}_{l(m-1)(n+1)} - u^{z}_{lmn})\\ &+ (u^{x}_{(l+1)mn} - u^{x}_{lmn}) + (u^{x}_{(l-1)mn} - u^{x}_{lmn})-(u^{x}_{l(m-1)(n+1)} - u^{x}_{lmn}) - (u^{x}_{l(m+1)(n-1)} - u^{x}_{lmn})\\ &+(u^{y}_{lm(n+1)} - u^{y}_{lmn}) + (u^{y}_{lm(n-1)} - u^{y}_{lmn}) - (u^{y}_{(l-1)(m+1)n} - u^{y}_{lmn})- (u^{y}_{(l+1)(m-1)n} - u^{y}_{lmn})\Big]\\ &+ C_{\text{Na-Cl}}\left( -2 u^{z}_{lmn}+v^{z}_{(l-1)mn}+v^{z}_{l(m-1)(n+1)}\right), \end{split} \end{equation} \begin{equation} \begin{split} M_{\text{Cl}} \frac {d^{2}v^{x}_{lmn}}{dt^{2}} & = \frac{C_{\text{Cl-Cl}}}{2}\Big[ (v^{x}_{(l+1)mn} - v^{x}_{lmn})+ (v^{x}_{(l-1)mn} - v^{x}_{lmn})+ (v^{x}_{l(m+1)n} - v^{x}_{lmn}) + (v^{x}_{l(m-1)n} - v^{x}_{lmn})\\ & + (v^{x}_{(l+1)m(n-1)} - v^{x}_{lmn})+ (v^{x}_{(l-1)m(n+1)} - v^{x}_{lmn})+ (v^{x}_{l(m+1)(n-1)} - v^{x}_{lmn})+ (v^{x}_{l(m-1)(n+1)}- v^{x}_{lmn})\\ & + (v^{y}_{l(m+1)n} - v^{y}_{lmn}) + (v^{y}_{l(m-1)n} - v^{y}_{lmn}) - (v^{y}_{(l+1)m(n-1)} - v^{y}_{lmn}) - (v^{y}_{(l-1)m(n+1)} - v^{y}_{lmn})\\ &+ (v^{z}_{(l+1)mn}- v^{z}_{lmn})+ (v^{z}_{(l-1)mn} - v^{z}_{lmn})-(v^{z}_{l(m+1)(n-1)} - v^{z}_{lmn})- (v^{z}_{l(m-1)(n+1)} - v^{z}_{lmn})\Big] \\ &+C_{\text{Na-Cl}}\left( -2 v^{x}_{lmn}+u^{x}_{lmn}+u^{x}_{(l+1)(m+1)(n-1)}\right), \end{split} \end{equation} \begin{equation} \begin{split} M_{\text{Cl}} \frac {d^{2}v^{y}_{lmn}}{dt^{2}} &= \frac{C_{\text{Cl-Cl}}}{2}\Big[ (v^{y}_{l(m+1)n} - v^{y}_{lmn}) + (v^{y}_{l(m-1)n} - v^{y}_{lmn}) + (v^{y}_{(l+1)m(n-1)} - v^{y}_{lmn})+ (v^{y}_{(l-1)m(n+1)} - v^{y}_{lmn}) \\ &+ (v^{y}_{(l-1)(m+1)n} - v^{y}_{lmn}) + (v^{y}_{lm(n-1)} - v^{y}_{lmn}) + (v^{y}_{(l+1)(m-1)n} - v^{y}_{lmn}) + (v^{y}_{lm(n+1)} - v^{y}_{lmn})\\ &+ (v^{x}_{l(m+1)n} - v^{x}_{lmn}) + (v^{x}_{l(m-1)n} - v^{x}_{lmn}) - (v^{x}_{(l-1)m(n+1)} - v^{x}_{lmn}) - (v^{x}_{(l+1)m(n-1)} - v^{x}_{lmn}) \\ &+ (v^{z}_{lm(n-1)} - v^{z}_{lmn})+(v^{z}_{lm(n+1)} - v^{z}_{lmn}) - (v^{z}_{(l+1)(m-1)n} - v^{z}_{lmn})- (v^{z}_{(l-1)(m+1)n} - v^{z}_{lmn}) \Big]\\ &+ C_{\text{Na-Cl}}\left( -2 v^{y}_{lmn}+u^{y}_{l(m+1)n}+u^{y}_{(l+1)m(n-1)}\right), \end{split} \end{equation} \begin{equation} \begin{split} M_{\text{Cl}} \frac {d^{2}v^{z}_{lmn}}{dt^{2}} &= \frac{C_{\text{Cl-Cl}}}{2}\Big[ (v^{z}_{(l-1)mn} - v^{z}_{lmn})+ (v^{z}_{(l-1)l(m+1)n} - v^{z}_{lmn})+ (v^{z}_{l(m+1)(n-1)} - v^{z}_{lmn}) + (v^{z}_{lm(n-1)} - v^{z}_{lmn}) \\ &+ (v^{z}_{lm(n+1)} - v^{z}_{lmn})+ (v^{z}_{(l+1)mn} - v^{z}_{lmn})+ (v^{z}_{(l+1)(m-1)n} - v^{z}_{lmn})+ (v^{z}_{l(m-1)(n+1)} - v^{z}_{lmn})\\ &+ (v^{x}_{(l+1)mn} - v^{x}_{lmn}) + (v^{x}_{(l-1)mn} - v^{x}_{lmn})-(v^{x}_{l(m-1)(n+1)} - v^{x}_{lmn}) - (v^{x}_{l(m+1)(n-1)} - v^{x}_{lmn})\\ &+(v^{y}_{lm(n+1)} - v^{y}_{lmn}) + (v^{y}_{lm(n-1)} - v^{y}_{lmn}) - (v^{y}_{(l-1)(m+1)n} - v^{y}_{lmn})- (v^{y}_{(l+1)(m-1)n} - v^{y}_{lmn})\Big]\\ &+ C_{\text{Na-Cl}}\left( -2 v^{z}_{lmn}+u^{z}_{l(m+1)(n-1)}+u^{z}_{(l+1)mn}\right). \end{split} \end{equation}

To Do: