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Motivation

For our student project we wanted to compare the calculations of the molecular orbital
Hamiltonians, energies and overlap matrices of the 1s and 2s Atomic orbitals, as Prof.
Hadley provides them in the online course of the lecture. For this web-applications he
used the Monte Carlo Method to do the Integrations, this is, as the name implies,
an approximation that is based on random numbers. This method is suitable in the
context of a web application, because it does not require a lot of computational resources
and is therefore more time efficient than exact methods. And so, we wanted to do the
calculations in a context, were time is not crucial, and we could emphasize on accuracy.
Therefore, we created some MATLAB scripts that do these calculations by using a
numerical integration method and compare the results to those generated by the Monte
Carlo method.

For the following sections the page [2] is taken as reference.

1 Roothan Equations

In order to solve the molecular orbital Hamiltonian, a method called Linear Combination
of Atomic Orbitals (LCAO) is often used. It is assumed that the wave function can be
described in terms of hydrogen atomic orbitals, which are centred around the nuclei.

ψmo(~r) =
∑
a

∑
ao

cao,aφ
Za
ao (~r − ~ra) (1)

In this equation ao labels the atomic orbitals (1 = 1s, 2 = 2s, 3 = 2px. . . . . . ). The
number of calculated molecular orbitals is equal to the number of unknown coefficients
N. The more atomic orbitals are included the higher the accuracy of the result. But the
difficulty of the numerical calculation also increases with the number of atomic orbitals
used. Since there is no strict rule on how many aos should be included, it is a reasonable
choice to take all of the occupied atomic orbitals of the isolated atoms that are part
of the molecule. For instance, to calculate the atomic orbitals of water one might use
the 1s, 2s and 2p orbitals of oxygen and the 1s orbitals of the two hydrogen atoms. In
this case N would be 7, and thus 7 terms in the wavefunction of the molecular orbital.
Using the relabelling of atomic orbitals as mentioned above the trial wave function can
be written as:

ψmo =

N∑
p=1

cpφp. (2)

So the time independent Schrödinger equation is

Hmoψmo = Eψmo. (3)
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In order to solve it, one multiplies this equation from the left by each atomic orbital and
integrates over all space. This results in a set of N algebraic equations which are called
Roothaan equations.

〈φ1|Hmo|ψmo〉 = E〈φ1|ψmo〉
〈φ2|Hmo|ψmo〉 = E〈φ2|ψmo〉

...
〈φN |Hmo|ψmo〉 = E〈φN |ψmo〉

(4)

By substituting in the form of ψmo, the Roothaan equation can be written in matrix
form.


H11 H12 · · · H1N

H21 H22 · · · H2N
...

...
. . .

...
HN1 HN2 · · · HNN



c1
c2
...
cN

 = E


S11 S12 · · · S1N
S21 S22 · · · S2N

...
...

. . .
...

SN1 SN2 · · · SNN



c1
c2
...
cN

 (5)

And out of there we get the matrix elements which we wanted to calculate in this student
project.

Hpq = 〈φp|Hmo|φq〉 (6)

Spq = 〈φp|φq〉 (7)

.

2 1s Atomic Orbital

The wave function of the 1s Atomic Orbital is an Eigenstate of the Hamiltonian and can
be described like this

φZ1s =

√
Z3

πa30
exp

(
−Zr
a0

)
. (8)

with Z as the charge of the nucleus and a0 as the Bohr radius. The variable of this
function is r, so the cartesian coordinates have to be converted to spherical coordinates
to use this wave function.

By putting this atomic orbital in the Schrödinger equation, the Energy E1 can be de-
termined.
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E1 = − ~2

2m

∆φ1s(~r)

φ1s(~r)
− Ze2

4πε0|~r|
(9)

The used variables ~, which is the reduced Planck constant, the permittivity ε0,the
electric charge e and the electron mass m are constants.

The first step of solving the Roothan equations is to calculate the integral for the S12
element.

S12 = 〈φ1s(~r − ~r1)|φ1s(~r − ~r2)〉. (10)

The second part is to calculate the Hamiltonian matrix elements. The general form is
given in (11).

Hij =
〈
φZ1s(~r − ~ri) |H|φZ1s(~r − ~rj)

〉
(11)

The Hamiltonian for the 1s Atomic Orbital H can be described by

H = − ~2

2m
∇2 − Ze2

4πε0|~r − ~r1|
− Ze2

4πε0|~r − ~r2|
. (12)

By doing some approximations the diagonal Hamiltonian matrix element can be deter-
mined using the following equation:

H11 = E1 −
Z4e2δ2

2πε0a30
exp(

−2Z|~r1 − ~r2|
a0

)

−
∫
H(|~r − ~r2| − δ)φZ1s(~r − ~r1)

Ze2

4πε0|~r − ~r2|
φZ1s(~r − ~r1)d3r

(13)

The function H(|~r− ~r2| − δ) is called Heavyside step function and returns the value 0 if
|~r − ~r2| < δ, otherwise it is going to return 1.

The offdiagonal element H12 can be described similarly.

H12 = E1S12 −
Z4e2δ2

2πa30ε0
exp(−Z|~r1 − ~r2|/a0)

−
∫
H(|~r − ~r1| − δ)φZ1s(~r − ~r1)

Ze2

4πε0|~r − ~r1|
φZ1s(~r − ~r2)d3r

(14)

These integrals can be solved numerically.
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3 2s Atomic Orbital

The 2s Atomic Orbital wave function looks like this

φZ2s =
1

4

√
Z3

2πa30

(
2− Zr

a0

)
exp

(
− Zr

2a0

)
. (15)

To calculate the Energie E1 almost the same equation as (9) can be used, just the 1s
wave function has to be replaced by the 2s wave function.

E1 = − ~2

2m

∆φ2s(~r)

φ2s(~r)
− Ze2

4πε0|~r|
(16)

The integral for calculating the S12 matrix element can be calculated in a similar way
than before, by using the right wavefunction.

S12 = 〈φ2s(~r − ~r1)|φ2s(~r − ~r2)〉 (17)

The elements of the Hamiltonian matrix by doing some approximations can be described
using following equations.

H11 = E2 −
Z4e2δ2

256πε0a30

(
2− Z|~r2 − ~r1|

a0

)2

exp

(
−Z|~r2 − ~r1|

a0

)
−
∫
H(|~r − ~r2| − δ)φZ2s(~r − ~r1)

Ze2

4πε0|~r − ~r2|
φZ2s(~r − ~r1)d3r

(18)

H12 = E1S12 −
Z4e2

πε0a20

(
a0 − exp(

δZ

a0
)

)
(a0 + δZ)exp

(
−Z|~r2 − ~r1|

a0

)
−
∫
H(|~r − ~r1| − δ)φZ2s(~r − ~r1)

Ze2

4πε0|~r − ~r1|
φZ2s(~r − ~r2)d3r

(19)

As written in the section above these integrals can be solved numerically, but there
are also some approximation methodes, like the Monte Carlo Method, to solve such
integrals.

4 Monte Carlo Method

The Monte Carlo Method can be used to approximate complicated integrals, like those
in the equations for the Hamiltonian matrix elements. Assume the integral of a function
f should be calculated:
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F =

∫
f(x)dx, (20)

with the Volume

V =

∫
dx. (21)

Then the integral can be approximated just by evaluating the function for N sample
points, taking the average of these values and multiplying with the Volume V .

F̃ = V
1

N

N∑
n=1

f(xn) (22)

For a large number N this approximation gets very close to the correct value (see also
[1]).

lim
n→∞

F̃ = F (23)

5 Matlab Program

The project consists of two main scripts. One for the 1s and one for the 2s atomic orbital.
Each script does essentially three things: first calculating the energies E1 and E2, second
calculating the elements of the overlap matrix S11 and S12, and finally calculating the
H11 and H12 matrix elements. The formulas for all these calculations were taken form
Prof. Hadleys online course. We also needed some functions. Two for calculating the
atomic orbitals 1s and 2s, two more to calculate the result of the Laplacian operator
acting on those and one to evaluate the Heavysidestep function.
The energies are calculated by the Monte Carlo Method, which gives several different
approximate values for the energies, so we took the average over those values to get a
proper result.
S11 and S12 are then calculated by numerical integration over a defined region around
the position of the nucleus. With those results we were then able to calculate the H11
and H12 matrix elements for the 1s and the 2s atomic orbitals. We calculated them by
solving the numerical integral and by using the Monte Carlo integration method. The
Monte Carlo calculation can be done arbitrarily often. But we found that doing this
calculation for one million points each takes about 1 sec. So this starts getting time
consuming pretty fast. We chose to do the Monte Carlo method 100 times. But all these
parameters can be altered in the program.

The value that was obtained by solving the integral numerically is plotted (black line)
with the different values that were obtained by doing the Monte Carlo method several
times (red x). We also calculated the average over the Monte Carlo values and plotted
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this value too (blue dashed line), to give an idea about the overall tendency of the Monte
Carlo methods results. Thus it is quite easy to show the difference between the results
of the Monte Carlo method and the numerical integration.

Abbildung 1: Monte Carlo Method and exact solution of the 1s atomic orbital H11

element

Abbildung 2: Monte Carlo Method and exact solution of the 1s atomic orbital H12

element
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Abbildung 3: Monte Carlo Method and exact solution of the 2s atomic orbital H11

element

Abbildung 4: Monte Carlo Method and exact solution of the 2s atomic orbital H12

element
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