Technische Universität Graz

14. Photons

May 8, 2018

Inverse opal photonic crystal

FIgure 8: The photonic band structure for the lowest bands of an "inverse opal" structure: a
 face-centered cubic (fcc) lattice of close-packed air spheres in dielectric ($\varepsilon=13$). (Inset shows fabricated structure from figure 9.) There is a complete photonic band gap (yellow) between the eighth and ninth bands. The wave vector varies across the irreducible Brillouin zone between the labelled high-symmetry points; see appendix B for a discussion of the Brillouin zone of an fcc lattice.
http://ab-initio.mit.edu/book

Photon density of states

Diffraction causes gaps in the density of modes for k vectors near the planes in reciprocal space where diffraction occurs.

photon density of states for voids in an fcc lattice
http://www.public.iastate.edu/~cmpexp/groups/PBG/pres_mit_short/sld002.htm

The alga Calyptrolithophora papillifera is encased in a shell of calcite crystals with a two-layer structure (visible on oblique face). Calculations show that this protective covering reflects ultraviolet light. Image Credit: J. Young/Natural History Museum, London
http://www.physicscentral.com/explore/pictures/algae.cfm

Inverse diamond

Solved by a student with the plane wave method

Spheres on any 3-D Bravais lattice

$$
c(\vec{r})^{2} \nabla^{2} A_{j}=\frac{d^{2} A_{j}}{d t^{2}}
$$

$$
c(\vec{r})^{2}=\sum_{\vec{G}} b_{\bar{G}} e^{i \vec{G} \cdot \vec{r}}=c_{1}^{2}+\frac{4 \pi\left(c_{2}^{2}-c_{1}^{2}\right)}{V} \sum_{\vec{G}} \frac{\sin (|G| R)-|G| R \cos (|G| R)}{|G|^{3}} \exp (i \vec{G} \cdot \vec{r})
$$

Plane wave method

$$
\begin{gathered}
c(\vec{r})^{2} \nabla^{2} A_{j}=\frac{d^{2} A_{j}}{d t^{2}} \\
c(\vec{r})^{2}=\sum_{\vec{G}} b_{\vec{G}} e^{i \vec{G} \cdot \vec{r}} \quad A_{j}=\sum_{\vec{k}} A_{k} e^{i(\vec{k} \cdot \vec{r}-\alpha t)} \\
\sum_{\vec{G}} b_{\vec{G}} e^{i \vec{G} \cdot \vec{r}} \sum_{\vec{k}}\left(-\kappa^{2}\right) A_{\vec{k}} e^{i(\vec{k} \cdot \vec{r}-\omega t)}=-\omega^{2} \sum_{\vec{k}} A_{\vec{k}} e^{i(\vec{k} \cdot \vec{r}-\omega t)} \\
\sum_{\vec{k}} \sum_{\vec{G}}\left(-\kappa^{2}\right) b_{\vec{G}} A_{\bar{k}} e^{i(\vec{G} \cdot \vec{r}+\vec{k} \cdot \vec{r}-\omega t)}=-\omega^{2} \sum_{\vec{k}} A_{\vec{k}} e^{i(\vec{k} \cdot \vec{r}-\alpha t)} \\
\text { collect like terms: } \vec{G}+\vec{\kappa}=\vec{k} \quad \Rightarrow \vec{\kappa}=\vec{k}-\vec{G} \\
\text { Central equations: } \quad \sum_{\vec{G}}(\vec{k}-\vec{G})^{2} b_{\vec{G}} A_{\vec{k}-\vec{G}}=\omega^{2} A_{\vec{k}}
\end{gathered}
$$

Plane wave method

$$
\text { Central equations: } \quad \sum_{\vec{G}}(\vec{k}-\vec{G})^{2} b_{\vec{G}} A_{\vec{k}-\vec{G}}=\omega^{2} A_{\vec{k}}
$$

Choose a k value inside the 1 st Brillouin zone. The coefficient A_{k} is coupled by the central equations to coefficients A_{k} outside the 1 st Brillouin zone. Write these coupled equations in matrix form.

$$
\left[\begin{array}{ccccc}
\left(\vec{k}+\vec{G}_{2}\right)^{2} b_{0}-\omega^{2} & \left(\vec{k}+\vec{G}_{2}-\vec{G}_{1}\right)^{2} b_{\vec{G}_{1}} & k^{2} b_{\vec{G}_{2}} & \left(\vec{k}+\vec{G}_{2}-\vec{G}_{3}\right)^{2} b_{\vec{G}_{3}} & \left(\vec{k}+\vec{G}_{2}-\vec{G}_{4}\right)^{2} b_{\vec{G}_{4}} \\
\left(\vec{k}+2 \vec{G}_{1}\right)^{2} b_{-\vec{G}_{1}} & \left(\vec{k}+\vec{G}_{1}\right)^{2} b_{0}-\omega^{2} & k^{2} b_{\vec{G}_{1}} & \left(\vec{k}+\vec{G}_{1}-\vec{G}_{2}\right)^{2} b_{\vec{G}_{2}} & \left(\vec{k}+\vec{G}_{1}-\vec{G}_{3}\right)^{2} b_{\vec{G}_{3}} \\
\left(\vec{k}+\vec{G}_{2}\right)^{2} b_{-\vec{G}_{2}} & \left(\vec{k}+\vec{G}_{1}\right)^{2} b_{-\vec{G}_{1}} & k^{2} b_{0}-\omega^{2} & \left(\vec{k}-\vec{G}_{1}\right)^{2} b_{\vec{G}_{1}} & \left(\vec{k}-\vec{G}_{2}\right)^{2} b_{\vec{G}_{2}} \\
\left(\vec{k}-\vec{G}_{1}+\vec{G}_{3}\right)^{2} b_{-\vec{G}_{3}} & \left(\vec{k}-\vec{G}_{1}+\vec{G}_{2}\right)^{2} b_{-\vec{G}_{2}} & k^{2} b_{-\vec{G}_{1}} & \left(\vec{k}-\vec{G}_{1}\right)^{2} b_{0}-\omega^{2} & \left(\vec{k}-2 \vec{G}_{1}\right)^{2} b_{\vec{G}_{1}} \\
\left(\vec{k}-\vec{G}_{2}+\vec{G}_{4}\right)^{2} b_{-\vec{G}_{4}} & \left(\vec{k}-\vec{G}_{2}+\vec{G}_{3}\right)^{2} b_{-\vec{G}_{3}} & k^{2} b_{-\vec{G}_{2}} & \left(\vec{k}-\vec{G}_{2}+\vec{G}_{1}\right)^{2} b_{-\vec{G}_{1}} & \left(\vec{k}-\vec{G}_{2}\right)^{2} b_{0}-\omega^{2}
\end{array}\right]\left[\begin{array}{c}
A_{k} \\
A_{k} \\
A_{k-G_{1}} \\
A_{k-G_{2}}
\end{array}\right]=0
$$

There is a matrix like this for every k value in the 1 st Brillouin zone.

2-D array of air holes

Solved by a student with the plane wave method

Inverse diamond

Empty lattice approximation

Empty lattice approximation

Empty lattice approximation

XvUv Lv
$\ulcorner\vee$

Hexagonal

Tetragonal

http://ab-initio.mit.edu/book/

Photonic Crystals

Molding the Flow of Light secondedimon

John D. Joannopoulos
Steven G. Johnson
Joshua N. Winn
Robert D. Meade

Empty lattice approximation

http://ab-initio.mit.edu/book/

fcc

Figure 2: The photonic band structure for the lowest-frequency electromagnetic modes of a face-centered cubic (fcc) lattice of close-packed dielectric spheres ($\varepsilon=13$) in air (inset). Note the absence of a complete photonic band gap. The wave vector varies across the irreducible Brillouin zone between the labelled high-symmetry points; see appendix B for a discussion of the Brillouin zone of an fcc lattice.
http://ab-initio.mit.edu/book/

diamond

Figure 3: The photonic band structure for the lowest bands of a diamond lattice of air spheres in a high dielectric ($\varepsilon=13$) material (inset). A complete photonic band gap is shown in yellow. The wave vector varies across the irreducible Brillouin zone between the labelled high-symmetry points; see appendix B for a discussion of the Brillouin zone of an fcc lattice.
http://ab-initio.mit.edu/book/

Woodpile photonic crystal

FIgure 7: The photonic band structure for the lowest bands of the woodpile structure (inset, from figure 6) with $\varepsilon=13$ logs in air. The irreducible Brillouin zone is larger than that of the fcc lattice described in appendix B, because of reduced symmetry-only a portion is shown, including the edges of the complete photonic band gap (yellow).
http://ab-initio.mit.edu/book

Yablonovite

Figure 5: The photonic band structure for the lowest bands of Yablonovite (inset, from figure 4). Wave vectors are shown for a portion of the irreducible Brillouin zone that includes the edges of the complete gap (yellow). A detailed discussion of this band structure can be found in Yablonovitch et al. (1991a).
http://ab-initio.mit.edu/book/

http://lampx.tugraz.at/~hadley/ss1/emfield/photonic_crystals/photonic_table.html

Student projects

Use the plane wave method to calculate the dispersion relation for light in a 1-D layered material (or a 2-D or 3-D material)

Help complete the table of the empty lattice approximation

Adapt the program that solves the in 1-D Schroedinger equation to the wave equation

Technische Universität Graz
 Lattice vibrations / Phonons

Phonons are quantum particles of sound
The simplest model for lattice vibrations is atoms connected by linear springs

There is a shortest wavelength/maximum frequency
Find the normal mode solutions

Quantize the normal modes
Find the phonon density of states
Calculate the thermodynamic properties
Menu $\quad \vee \mid$ Sections $\quad \checkmark$ PHY.F20 Molecular and Solid State Physics

Normal Modes and Phonons

At finite temperatures, the atoms in a crystal vibrate. In the simulation below, the atoms move randomly around their equilibrium positions.

http://lampx.tugraz.at/~hadley/ss1/phonons/phonon_script.php

Vibrations of a mass on a spring

$$
\begin{aligned}
& \text { - } \\
& m \frac{d^{2} x}{d t^{2}}=-C x
\end{aligned}
$$

The solution has the form

$$
\begin{gathered}
x=A \mathrm{e}^{-i \omega t} \\
-\omega^{2} m A e^{-i \omega t}=-C A e^{-i \omega t} \\
\omega=\sqrt{\frac{C}{m}}
\end{gathered}
$$

Coupled masses

Newton's law

$$
M \frac{d^{2} x_{1}}{d t^{2}}=-C x_{1}+C\left(x_{2}-x_{1}\right) \quad M \frac{d^{2} x_{2}}{d t^{2}}=-C x_{2}+C\left(x_{1}-x_{2}\right)
$$

assume harmonic solutions

$$
\begin{aligned}
& x_{1}(t)=A_{1} \exp (i \omega t) \quad x_{2}(t)=A_{2} \exp (i \omega t) \\
&-\omega^{2} M A_{1} e^{i \omega t}=-2 C A_{1} e^{i \omega t}+C A_{2} e^{i \omega t} \\
&-\omega^{2} M A_{2} e^{i \omega t}=-2 C A_{2} e^{i \omega t}+C A_{1} e^{i \omega t} \\
&-\omega^{2} M\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]=\left[\begin{array}{cc}
-2 C & C \\
C & -2 C
\end{array}\right]\left[\begin{array}{c}
A_{1} \\
A_{2}
\end{array}\right]
\end{aligned}
$$

Find the eigenvectors of this matrix
The masses oscillate with the same frequency but different phases

Linear Chain

$$
m \frac{d^{2} u_{s}}{d t^{2}}=C\left(u_{s+1}-u_{s}\right)-C\left(u_{s}-u_{s-1}\right)=C\left(u_{s+1}-2 u_{s}+u_{s-1}\right)
$$

Assume every atom oscillates with the same frequency $u_{s}=A_{s} e^{-i \omega t}$
$\left[\begin{array}{cccccc}2 C-\omega^{2} m & -C & 0 & 0 & 0 & -C \\ -C & 2 C-\omega^{2} m & -C & 0 & 0 & 0 \\ 0 & -C & 2 C-\omega^{2} m & -C & 0 & 0 \\ 0 & 0 & -C & 2 C-\omega^{2} m & -C & 0 \\ 0 & 0 & 0 & -C & 2 C-\omega^{2} m & -C \\ -C & 0 & 0 & 0 & -C & 2 C-\omega^{2} m\end{array}\right]\left[\begin{array}{c}A_{1} \\ A_{2} \\ A_{3} \\ A_{4} \\ A_{5} \\ A_{6}\end{array}\right]=0$

$$
\left[\left(2 C-\omega^{2} m\right) \mathrm{I}-C\left(\mathrm{~T}+\mathrm{T}^{-1}\right)\right] \vec{A}=0 .
$$

Eigen vectors of the translation operator

$$
\begin{aligned}
T=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right] & {\left[\begin{array}{c}
1 \\
e^{i 2 \pi j / N} \\
e^{i 4 \pi j / N} \\
e^{i 4 \pi j / N} \\
\vdots \\
e^{i 2 \pi(N-1) j / N}
\end{array}\right] j=1, \cdots, N } \\
& {\left[\begin{array}{c}
1 \\
e^{i k a} \\
e^{i 2 k a} \\
e^{i 3 k a} \\
\vdots \\
e^{-i k a}
\end{array}\right] k=0, \pm \frac{2 \pi}{N a}, \pm \frac{4 \pi}{N a}, \cdots }
\end{aligned}
$$

Linear Chain

solution: $\quad u_{s}=A_{k} e^{i(k s a-\omega t)}=A_{k} e^{i k s a} e^{-i \omega t}$

