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Normal modes

The motion of the atoms can be described in terms of normal modes.

In a normal mode, all atoms oscillate at the same frequency .

The energy in a normal mode is quantized,

n is the number of phonons in that normal mode.
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Hannes Brandner



3 dimensions 

p atoms per unit cell

3p branches to the dispersion 
relation

3 acoustic modes (1 longitudinal, 2 
transverse)

3p - 3 optical modes



Silicon phonon dispersion, DOS

Different speeds of sound for different directions 
and polarizations causes dispersion of pulses.



Poisson's ratio
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E - Elastic constant
 - Poisson's ratio
 - density

If the density is known,  you can determine E and 
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Two atoms per primitive unit cell



Ge, C, -Sn ?



Inelastic neutron scattering

Diffraction condition for elastic scattering
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The whole crystal recoils with momentum G




Diffraction condition for inelastic scattering

phk K k G   
  

phK


is the phonon momentum

Phonon dispersion relations are determined experimentally by 
inelastic neutron diffraction
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long wavelength limit 

2

1 12 ( 2 )s
s s s

d um C u u u
dt    

discrete version of wave equation
2 2

2
2 2

d u d uc
dt dx



The solutions to the linear chain are the same as the solutions to the wave 
equation for |k|<</a.
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1-d wave equation
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At low T, there are only long wave length states 
occupied.

Phonons - long wavelength, 
low temperature limit
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Specific heat of 
insulators at low 
temperatures

Speed of sound
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Density of states:

3 polarizations



long wavelength, 
low temperature limit 
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Thermal properties 
1. Determine the dispersion relation:

Write down the equations of motion (masses and springs).

The solutions to these equations will be eigen functions of T 

Substitute the eigen functions of T into the equations of motion to 
determine the dispersion relation. 

2. Determine the density of states numerically from the dispersion 
relation

For every allowed k, find all corresponding values of . 
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long wavelength limit 
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The solutions to the linear chain are the same as the solutions to the wave 
equation for |k|<</a.
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1-d wave equation
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At low T, there are only long wave length states 
occupied.

Phonons - long wavelength, 
low temperature limit
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Specific heat of 
insulators at low 
temperatures

Speed of sound
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Density of states:

3 polarizations



long wavelength, 
low temperature limit 
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Empty lattice approximation 

Use the speed of sound 
instead of the speed of 
light.

3 acoustic branches
3p - 3 optical branches



Heat capacity / specific heat 

Specific heat is the measure of the heat energy required to increase 
the temperature of a unit quantity of a substance by a certain 
temperature interval. 

Heat capacity is the measure of the heat energy required to increase the 
temperature of an object by a certain temperature interval. 

For solids, the heat capacity at constant volume and heat capacity at 
constant pressure are almost the same.

The heat capacity was historically important for understanding 
solids.



Dulong and Petit (Classical result) 

Equipartition: 1
2 Bk T per quadratic term in energy

internal energy: 3 Bu nk T N atoms of the crystal

specific heat: 3v B
duc nk
dT

 

experiments: heat capacity goes to zero at zero temperature

Pierre Louis Dulong Alexis Therese Petit 



Einstein model for specific heat
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Einstein model for specific heat
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Einstein model for specific heat
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3v Bc nk
High temperatures 

low T does 
not fit



Debye model for specific heat
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Debye temperature D B Dk 

Like blackbody radiation up to a cutoff frequency.
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Debye model for heat capacity
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for low T
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Debye model 
(quantized wave 
equation with a cut-
off frequency)

fcc phonon density of states

Phonon density of states 



Thermal properties 
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internal energy density 

2
-1 -3

2

( ) exp
  [J K  m ]

exp 1

B
v

B
B

D
k Tduc d

dT T
k

k T


 



 
 

      
    

  
  







specific heat 

    -1 -3

0

1   [J K  m ]
exp 1

v

B

Dcs T dT d
T T

k T

 






 
 

 
 

 

entropy density 
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Helmholtz free energy density 





Silica Melt

α-Quartz
trigonal

2.65 g/cm3
573°C

β-Quartz
hexagonal
2.53 g/cm3

870°C
β-Tridymite
hexagonal
2.25 g/cm3

1470°C

β-Cristobalite
cubic

2.20 g/cm3 
1705°C

Quartz

f

T


