

Technische Universität Graz

Institute of Solid State Physics

16. Phonons

May 17, 2018

Normal modes

The motion of the atoms can be described in terms of normal modes.

In a normal mode, all atoms oscillate at the same frequency ω .

The energy in a normal mode is quantized, $E = \hbar \omega (n + \frac{1}{2})$.

n is the number of phonons in that normal mode.

Two atoms per primitive unit cell

NaCl

Si

x - Richtung:

NaCl

2 atoms/unit cell

6 equations

3 acoustic and3 optical branches

$$M_1 \frac{d^2 u_{nml}^x}{dt^2} = C \left(-2u_{nml}^x + v_{(n-1)m(l-1)}^x + v_{n(m-1)l}^x \right)$$

$$M_2 \frac{d^2 v_{nml}^x}{dt^2} = C \left(-2v_{nml}^x + u_{(n+1)m(l+1)}^x + u_{n(m+1)l}^x \right)$$

y - Richtung:

$$M_1 \frac{d^2 u_{nml}^y}{dt^2} = C \left(-2u_{nml}^y + v_{(n-1)(m-1)l}^y + v_{nm(l-1)}^y \right)$$

$$M_2 \frac{d^2 v_{nml}^y}{dt^2} = C \left(-2v_{nml}^y + u_{(n+1)(m+1)l}^y + u_{nm(l+1)}^y \right)$$

z - Richtung:

$$M_1 \frac{d^2 u_{nml}^z}{dt^2} = C \left(-2u_{nml}^z + v_{n(m-1)(l-1)}^z + v_{(n-1)ml}^z \right)$$

$$M_2 \frac{d^2 v_{nml}^z}{dt^2} = C \left(-2v_{nml}^z + u_{n(m+1)(l+1)}^z + u_{(n+1)ml}^z \right)$$

$$u_{nml}^{x} = u_{\vec{k}}^{x} \exp\left(i\left(\vec{k}\cdot\vec{a}_{1}+\vec{k}\cdot\vec{a}_{2}+\vec{k}\cdot\vec{a}_{3}-\omega t\right)\right) \qquad v_{nml}^{x} = v_{\vec{k}}^{x} \exp\left(i\left(\vec{k}\cdot\vec{a}_{1}+\vec{k}\cdot\vec{a}_{2}+\vec{k}\cdot\vec{a}_{3}-\omega t\right)\right)$$

CsCl

Hannes Brandner

3 dimensions

p atoms per unit cell

3*p* branches to the dispersion relation

3 acoustic modes (1 longitudinal, 2 transverse)

3p - 3 optical modes

Figure 8a Phonon dispersion relations in the [111] direction in germanium at 80 K. The two TA phonon branches are horizontal at the zone boundary position, $K_{\text{max}} = (2\pi/a)(\frac{1}{2}\frac{1}{2}\frac{1}{2})$. The LO and TO branches coincide at K = 0; this also is a consequence of the crystal symmetry of Ge. The results were obtained with neutron inelastic scattering by G. Nilsson and G. Nelin.

Silicon phonon dispersion, DOS

0.6

0.2

0.4 K/K_{max} , in [111] direction

0.8

1.0

Figure 8a Phonon dispersion relations in the [111] direction in germanium at 80 K. The two TA phonon branches are horizontal at the zone boundary position, $K_{\text{max}} = (2\pi/a)(\frac{1}{2}\frac{1}{2}\frac{1}{2})$. The LO and TO branches coincide at K = 0; this also is a consequence of the crystal symmetry of Ge. The results were obtained with neutron inelastic scattering by G. Nilsson and G. Nelin.

If the density is known, you can determine E and v.

Two atoms per primitive unit cell

Phonon density of states for hcp magnesium

Phonon density of states for AlN

Inelastic neutron scattering

Diffraction condition for elastic scattering

$$\vec{k}' = \vec{k} + \vec{G}$$

The whole crystal recoils with momentum $\hbar \vec{G}$

Phonon dispersion relations are determined experimentally by inelastic neutron diffraction

long wavelength limit

discrete version of wave equation

$$m\frac{d^2u_s}{dt^2} = C(u_{s+1} - 2u_s + u_{s-1})$$

1-d wave equation

$$\frac{d^2u}{dt^2} = c^2 \frac{d^2u}{dx^2}$$

The solutions to the linear chain are the same as the solutions to the wave equation for $|k| << \pi/a$.

Phonons - long wavelength, low temperature limit

At low *T*, there are only long wave length states occupied.

3 polarizations

Density of states: L

$$D(\omega)d\omega = \frac{3\omega^2}{2c^3\pi^2}d\omega.$$

____2

0

$$I = \frac{2\pi^{5}k_{B}^{4}T^{4}}{15c^{2}h^{3}} = \sigma T^{4} \qquad [J m^{-2} s^{-2}]$$

$$u(\lambda) = \frac{8\pi hc}{\lambda^5 \left(\exp\left(\frac{hc}{\lambda k_B T}\right) - 1 \right)} \qquad [J/m^4]$$

$$u = \frac{4\sigma T^4}{c} \qquad [J/m^3]$$

$$c_{\nu} = \frac{16\sigma T^3}{c} \qquad [\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{m}^{-3}]$$

$$f = \frac{-4\sigma T^4}{3c} \quad [J/m^3]$$

$$s = \frac{16\sigma T^3}{3c} \qquad [\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{m}^{-3}]$$

$$P = \frac{4\sigma T^4}{3c} \qquad [N/m^2]$$

Specific heat of insulators at low temperatures

$$C_v = \frac{24\sigma VT^3}{c}$$

Speed of sound

long wavelength, low temperature limit

Thermal properties

1. Determine the dispersion relation:

Write down the equations of motion (masses and springs).

The solutions to these equations will be eigen functions of T

$$\exp\left(i\left(\vec{k}\cdot\vec{a}_1+\vec{k}\cdot\vec{a}_2+\vec{k}\cdot\vec{a}_3-\omega t\right)\right)$$

Substitute the eigen functions of T into the equations of motion to determine the dispersion relation.

2. Determine the density of states numerically from the dispersion relation $D(\omega)$

For every allowed *k*, find all corresponding values of ω .

long wavelength limit

discrete version of wave equation

$$m\frac{d^2u_s}{dt^2} = C(u_{s+1} - 2u_s + u_{s-1})$$

1-d wave equation

$$\frac{d^2u}{dt^2} = c^2 \frac{d^2u}{dx^2}$$

The solutions to the linear chain are the same as the solutions to the wave equation for $|k| << \pi/a$.

Phonons - long wavelength, low temperature limit

At low *T*, there are only long wave length states occupied.

3 polarizations

Density of states: L

$$D(\omega)d\omega = \frac{3\omega^2}{2c^3\pi^2}d\omega.$$

____2

0

$$I = \frac{2\pi^{5}k_{B}^{4}T^{4}}{15c^{2}h^{3}} = \sigma T^{4} \qquad [J m^{-2} s^{-2}]$$

$$u(\lambda) = \frac{8\pi hc}{\lambda^5 \left(\exp\left(\frac{hc}{\lambda k_B T}\right) - 1 \right)} \qquad [J/m^4]$$

$$u = \frac{4\sigma T^4}{c} \qquad [J/m^3]$$

$$c_{\nu} = \frac{16\sigma T^3}{c} \qquad [\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{m}^{-3}]$$

$$f = \frac{-4\sigma T^4}{3c} \quad [J/m^3]$$

$$s = \frac{16\sigma T^3}{3c} \qquad [\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{m}^{-3}]$$

$$P = \frac{4\sigma T^4}{3c} \qquad [N/m^2]$$

Specific heat of insulators at low temperatures

$$C_v = \frac{24\sigma VT^3}{c}$$

Speed of sound

long wavelength, low temperature limit

Empty lattice approximation

Use the speed of sound instead of the speed of light.

3 acoustic branches 3*p* - 3 optical branches

Heat capacity / specific heat

Heat capacity is the measure of the heat energy required to increase the temperature of an object by a certain temperature interval.

Specific heat is the measure of the heat energy required to increase the temperature of a unit quantity of a substance by a certain temperature interval.

For solids, the heat capacity at constant volume and heat capacity at constant pressure are almost the same.

The heat capacity was historically important for understanding solids.

Dulong and Petit (Classical result)

Equipartition: $\frac{1}{2}k_BT$ per quadratic term in energy

internal energy: $u = 3nk_BT$ N atoms of the crystal

specific heat: c_v

$$c_v = \frac{du}{dT} = 3nk_B$$

experiments: heat capacity goes to zero at zero temperature

Pierre Louis Dulong

Alexis Therese Petit

Einstein model for specific heat

n = density of atoms

$$u(\omega) = D(\omega)\hbar\omega \frac{1}{\exp\left(\frac{\hbar\omega}{k_B T}\right) - 1} = \hbar\omega \frac{3n\delta(\omega - \omega_0)}{\exp\left(\frac{\hbar\omega}{k_B T}\right) - 1}$$

Einstein model for specific heat

$$c_{v} = \frac{du}{dT} = \frac{3n\hbar\omega_{0}\frac{\hbar\omega_{0}}{k_{B}T^{2}}\exp\left(\frac{\hbar\omega_{0}}{k_{B}T}\right)}{\left(\exp\left(\frac{\hbar\omega_{0}}{k_{B}T}\right)^{2}-1\right)^{2}} = \frac{3nk_{B}\left(\frac{\hbar\omega_{0}}{k_{B}T}\right)^{2}\exp\left(\frac{\hbar\omega_{0}}{k_{B}T}\right)}{\left(\exp\left(\frac{\hbar\omega_{0}}{k_{B}T}\right)-1\right)^{2}}$$

Einstein model for specific heat

$$c_{v} = \frac{3nk_{B}\left(\frac{\hbar\omega_{0}}{k_{B}T}\right)^{2}\exp\left(\frac{\hbar\omega_{0}}{k_{B}T}\right)}{\left(\exp\left(\frac{\hbar\omega_{0}}{k_{B}T}\right) - 1\right)^{2}}$$

Debye model for heat capacity

$$u(\omega) = D(\omega)\hbar\omega \frac{1}{\exp\left(\frac{\hbar\omega}{k_BT}\right) - 1} = \frac{3\omega^2}{2\pi^2 c^3} \frac{\hbar\omega}{\exp\left(\frac{\hbar\omega}{k_BT}\right) - 1}$$

$$u = \int_{0}^{\omega_{D}} u(\omega) d\omega = \int_{0}^{\omega_{D}} \frac{3\omega^{2}}{2\pi^{2}c^{3}} \frac{\hbar\omega}{\exp\left(\frac{\hbar\omega}{k_{B}T}\right) - 1} d\omega \approx \int_{0}^{\infty} \frac{3\omega^{2}}{2\pi^{2}c^{3}} \frac{\hbar\omega}{\exp\left(\frac{\hbar\omega}{k_{B}T}\right) - 1} d\omega$$

for low T
$$\int_{0}^{\infty} \frac{x^{3}}{\exp(x) - 1} dx = \frac{\pi^{4}}{15}$$

$$u \approx \frac{3\pi^4}{5} nk_B \frac{T^4}{\theta_D^3} \qquad c_v \approx \frac{12\pi^4}{5} nk_B \left(\frac{T}{\theta_D}\right)^3$$

ſ		1	Т	able	1 D	ebye t	emp	oeratu	re a	and the	ermal	cor	nduct	ivity	,			- T-		1				
LI	ве	i i i i i i i															В	C		Ν	0		F	Ne
344 0.85	1440 2.00																0.2	2: 7 1	230 .29			: : :	•	75
Na	Mg																AI	S	i	Р	s		CI	Ar
158 1.41	400 1.56	÷.:		Tl	Low herma	tem] cond	oera luct	ture l ivity	imi at 3	t of θ, 00 K,	in K in W	elvi cm	n -'K-	-1		•	428 2.37	62	15 48	2.		•' .		92
к	Ca	Sc	Ti		۷	Cr	1	Mn	Fe		Co	Ni		Cu	z	n	Ga	G	e	As	S	e	Br	Kr
91 1.02	230	360. 0.16	420 0.2	0. 22	380 0.31	630 0.94	4 (410 0.08	47 0.8	0 4 80 1	45 .00	45 0.9	0 91	343 4.0	3 1 1	27 .16	320 0.41	37	74 60	282 0.5	90 0 0.) .02		72
Rb	Sr	Y	Zr		Nb	Мо	٦	Tc	Ru	ı F	₹h	Pd		Ag	С	d	In	Si	nw	Sb	Te	e	I	Xe
56 0.58	147	280 0.17	29) 0.2	1 23	275 0.54	450 1.38	3 (0.51	600 1.1	0 4 17 1	80 .50	27- 0.7	4 72	225 4.29	9 0	09 .97	108 0.82	20)0 67	211 0.2	15 4 0.	53 02		64
Cs	Ba	Laβ	Hf		Та	w	F	Re	Os	1	r	Pt		Au	н	g	ті	Pt	>	Bi	Po	D	At	Rn
38 0.36	110	142 0.14	252 0.2	223	240 0.58	400 1.74	4	430 0.48	500 0.8	0 4 88 1	20 .47	240 0.7	0 72	165 3.1	7	1.9	78.5 0.46	10 0.)5 35	119 0.0	в			
Fr	Ra	Ac	\square																					
				Ce	Pr		Nd	Pn	٦	Sm	Eu		Gd		Tb	Dy		ю	Er		Tm	Yb	Lu	
			U	0.1	1 0	10	0.16			0.12			200		0.14	21	0	2.4.0				120	21	0
			Y	7.1	- 0.	12	0.10			0.13	+		0.1		0.11	0.		J.16	0.1	4	0.17	0.3	5 0.	16
				in	Pa		J	Np		Pu	An	n	Cm		Bk	Cf		S	Fm		Md	No	Lr	
				163 0.5	4		207 0.28	0.0)6	0.07	ľ			•	•					·		ŀ	1.	

Phonon density of states

Thermal properties

internal energy density
$$u = \int_{0}^{\infty} u(\omega) d\omega = \int_{0}^{\infty} \frac{\hbar \omega D(\omega)}{\exp\left(\frac{\hbar \omega}{k_B T}\right) - 1} d\omega \left[J/m^3 \right]$$

ific heat
$$c_{v} = \frac{du}{dT} = \int \left(\frac{\hbar\omega}{T}\right)^{2} \frac{D(\omega) \exp\left(\frac{\hbar\omega}{k_{B}T}\right)}{k_{B} \left(\exp\left(\frac{\hbar\omega}{k_{B}T}\right) - 1\right)^{2}} d\omega \quad [J \text{ K}^{-1} \text{ m}^{-3}]$$

speci

entropy density
$$s(T) = \int \frac{C_v}{T} dT = \frac{1}{T} \int_0^\infty \frac{\hbar \omega D(\omega)}{\exp\left(\frac{\hbar \omega}{k_B T}\right) - 1} d\omega \quad [J \text{ K}^{-1} \text{ m}^{-3}]$$

Helmholtz free energy density

$$f(T) = u - Ts = k_B T \int_{0}^{\infty} D(\omega) \ln\left(1 - \exp\left(\frac{-\hbar\omega}{k_B T}\right)\right) d\omega \quad \left[J/m^3\right]$$

Phonons

	Linear Chain $m\frac{d^2u_s}{dt^2} = C(u_{s+1} - 2u_s + u_{s-1})$	Linear chain 2 masses $M_1 \frac{d^2 u_s}{dt^2} = C(v_{s-1} - 2u_s + v_s)$ $M_2 \frac{d^2 v_s}{dt^2} = C(u_s - 2v_s + u_{s+1})$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Eigenfunction solutions	$u_s = A_k e^{i(ksa - at)}$	$u_{s} = ue^{i(ksa - at)}$ $v_{s} = ve^{i(ksa - at)}$	$u_{lmn}^{x} = u_{\overrightarrow{k}}^{x} e^{i(l\overrightarrow{k}\cdot\overrightarrow{a_{1}}+m\overrightarrow{k}\cdot\overrightarrow{a_{2}}+n\overrightarrow{k}\cdot\overrightarrow{a_{3}})} = u_{\overrightarrow{k}}^{x} e^{i((\underline{-u})\cdot\overrightarrow{k}\cdot\overrightarrow{a_{3}})}$ And similar expressions for the y and z
Dispersion relation	$\omega = \sqrt{\frac{4C}{m}} \left \sin\left(\frac{ka}{2}\right) \right $ $\frac{a}{\sqrt{4C/m}}$ $-\frac{\pi}{a}$ 0 k $\frac{\pi}{a}$	$\omega^{2} = C \left(\frac{1}{M_{1}} + \frac{1}{M_{2}} \right) \pm C \sqrt{\left(\frac{1}{M_{1}} + \frac{1}{M_{2}} \right)^{2} - \frac{4 \sin^{2} \left(\frac{ka}{2} \right)}{M_{1}M_{2}}}$ $\left[2C \left(\frac{1}{M_{1}} + \frac{1}{M_{2}} \right) \right]^{\nu_{2}} \left(\frac{1}{2C/M_{2}} \right)^{\nu_{2}} \left(\frac{2C/M_{2}}{M_{1}} \right)$	$\begin{array}{c} \text{The dispersions}\\ & = \cos(\frac{a}{2}(k_x + k_y + k_z)) - \cos(\frac{a}{2}(3k_x - k_y - k_z)) & -\cos(\frac{a}{2}(k_x + k_y - k_z)) \\ -\cos(\frac{a}{2}(-k_x + 3k_y - k_z)) - \cos(\frac{a}{2}(-k_x - k_y + 3k_z)) & -\cos(\frac{a}{2}(-k_x + k_y - k_z)) \\ +\cos(\frac{a}{2}(-k_x + 3k_y - k_z)) - \cos(\frac{a}{2}(-k_x - k_y + 3k_z)) & -\cos(\frac{a}{2}(-k_x + k_y - k_z)) \\ -\cos(\frac{a}{2}(k_x + k_y + k_z)) + \cos(\frac{a}{2}(3k_x - k_y - k_z)) & -\cos(\frac{a}{2}(-k_x + k_y - k_z)) \\ -\cos(\frac{a}{2}(-k_x + 3k_y - k_z)) + \cos(\frac{a}{2}(-k_x - k_y + 3k_z)) & -\cos(\frac{a}{2}(-k_x + k_y - k_z)) \\ -\cos(\frac{a}{2}(-k_x + 3k_y - k_z)) + \cos(\frac{a}{2}(-k_x - k_y + 3k_z)) & +\cos(\frac{a}{2}(-k_x + k_y - k_z)) \\ & -\cos(\frac{a}{2}(-k_x + 3k_y - k_z)) + \cos(\frac{a}{2}(-k_x - k_y + 3k_z)) & +\cos(\frac{a}{2}(-k_x + k_y - k_z)) \\ & -\cos(\frac{a}{2}(-k_x - k_y - k_z)) + \cos(\frac{a}{2}(-k_x - k_y + 3k_z)) & +\cos(\frac{a}{2}(-k_x + k_y - k_z)) \\ & -\cos(\frac{a}{2}(-k_x - k_y - k_z)) + \cos(\frac{a}{2}(-k_x - k_y - k_z)) & +\cos(\frac{a}{2}(-k_x + k_y - k_z)) \\ & -\cos(\frac{a}{2}(-k_x - k_y - k_z)) + \cos(\frac{a}{2}(-k_x - k_y - k_z)) & +\cos(\frac{a}{2}(-k_x + k_y - k_z)) \\ & -\cos(\frac{a}{2}(-k_x - k_y - k_z)) + \cos(\frac{a}{2}(-k_x - k_y - k_z)) & +\cos(\frac{a}{2}(-k_x - k_y - k_z)) \\ & -\cos(\frac{a}{2}(-k_x - k_y - k_z)) + \cos(\frac{a}{2}(-k_x - k_y - k_z)) & +\cos(\frac{a}{2}(-k_x - k_y - k_z)) \\ & -\cos(\frac{a}{2}(-k_x - k_y - k_z)) + \cos(\frac{a}{2}(-k_x - k_y - k_z)) & +\cos(\frac{a}{2}(-k_x - k_y - k_z)) \\ & -\cos(\frac{a}{2}(-k_x - k_y - k_z)) + \cos(\frac{a}{2}(-k_x - k_y - k_z)) & +\cos(\frac{a}{2}(-k_x - k_y - k_z)) \\ & -\cos(\frac{a}{2}(-k_x - k_y - k_z)) + \cos(\frac{a}{2}(-k_x - k_y - k_z)) & +\cos(\frac{a}{2}(-k_x - k_y - k_z)) \\ & -\cos(\frac{a}{2}(-k_x - k_y - k_z)) + \cos(\frac{a}{2}(-k_x - k_y - k_z)) & +\cos(\frac{a}{2}(-k_x - k_y - k_z)) \\ & -\cos(\frac{a}{2}(-k_x - k_y - k_z)) + \cos(\frac{a}{2}(-k_x - k_y - k_z)) & +\cos(\frac{a}{2}(-k_x - k_y - k_z)) \\ & -\cos(\frac{a}{2}(-k_x - k_y - k_z)) + \cos(\frac{a}{2}(-k_x - k_y - k_z)) & +\cos(\frac{a}{2}(-k_x - k_y - k_z)) \\ & -\cos(\frac{a}{2}(-k_x - k_y - k_z)) + \cos(\frac{a}{2}(-k_x - k_y - k_z)) & +\cos(\frac{a}{2}(-k_x - k_y - k_z)) \\ & -\cos(\frac{a}{2}(-k_x - k_y - k_z)) + \cos(\frac{a}{2}(-k_x - k_y - k_z) & +\cos(\frac{a}{2}(-k_x - k_y - k_z)) \\ & -\cos(\frac{a}{2}(-k_x - k_y - k_z) + \cos(\frac{a}{2}(-k_x - k_y - k_z)) \\ & -\cos(\frac{a}{2}(-k_x$
Density of states D(k)	$D(k) = \frac{1}{\pi}$	$D(k) = \frac{1}{\pi}$	$D(k) = \frac{3k^2}{2\pi^2}$

Quartz

