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Every property of a molecule can be calculated using quantum mechanics.

Review: Molecules I 

Make some approximations.

The exact solution to Hred can be constructed from the solutions to Hmo.

Molecular orbital Hamiltonian:



Review: Molecules II 

The molecular orbitals are constructed using LCAO.

The many electron wavefunction is constructed as a Slater determinant.

This is an exact solution to Hred and an approximate solution to Hmp.

The energy is calculated including the electron-electron interactions. 

Substitute into    . , construct the Roothaan equations.



Bond potentials
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Born-Oppenheimer Approximation (part 2) 

Use the electronic energy as the potential for the nuclei

For H2, the Hamiltonian for the protons is 

go to center of mass and relative coordinates
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Vibrational energy levels
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Energy levels of the Morse potential

Morse potential 

Look for a solution in terms of the harmonic oscillator wave functions 
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Energy levels of the Morse potential

This results in the following matrix equation 
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The eigen values of this matrix are the energy levels of the Morse potential
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Normalized harmonic oscillator wave functions



Vibrations, translation, and rotation

3n degrees of freedom

3 translational degrees of freedom

Linear molecule: 2 rotational, 3n-5 vibrational degrees of freedom

Nonlinear molecule: 3 rotational, 3n-6 vibrational degrees of freedom



Mass-spring model for n atoms with 3n degrees of freedom

Vibrations, translation, and rotation



Vibrations, translation, and rotation

3n elements

For a normal mode solution, all of the atoms move with the 
same frequency up=Apeiωt, where Ap is the amplitude of 
displacement p=1,2,⋯,3n.



ν1,O-H symmetric stretching
3657 cm−1 (2.734 μm)
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The three fundamental vibrations of the water molecule

ν2, H-O-H bending
1595 cm−1 (6.269 μm)

ν3, O-H asymmetric stretching
3756 cm−1 (2.662 μm)

3n - 3 translational - 3 rotational = 3 vibrational normal modes



Molecular rotations

In the first approximation, consider the molecules as rigid and calculate 
the moment of inertia (Trägheitsmoment).
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The energy levels for a rigid rotator are 

Moment of inertia (Trägheitsmoment)
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Excited electrical states

The bonding between atoms and 
the effective spring constants 
change when a molecule enters an 
excited electronic state. The 
vibrational and rotational modes 
have to be recalculated.



"Molecular spectroscopy is the study of absorption of light by molecules. In the 
gas phase at low pressures, molecules exhibit absorption in narrow lines which 
are very characteristic of the molecule as well as the temperature and pressure 
of its environment. In the microwave and long-wavelength infrared regions of 
the spectrum, these lines are due to quantized rotational motion of the molecule. 
At shorter wavelengths similar lines are due to quantized vibration and 
electronic motion as well as rotational motion. The precise frequencies of these 
lines can be fit to quantum mechanical models which can be used both to 
determine the structure of the molecule and to predict the frequencies and 
intensities of other lines. Because this absorption is so characteristic, it is very 
valuable for detecting molecules in the Earth's stratosphere, planetary 
atmospheres, and even the interstellar medium." 

http://spec.jpl.nasa.gov/





IR absorption spectrum

Near IR absorption spectrum of dichloromethane .



Dieke, Journal of Molecular Spectroscopy 2, p. 494 (1958)

Emission spectra
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Chemical bonds 

Ionic bonds
Covalent bonds
Metallic bonds
Bond potentials
Polar bonds
 - bonds
 - bonds
double bonds
triple bonds



Ionic bond

Coulomb force:

Energy needed to separate 
charges e and -e

Ionic bonds are a few eV 
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Covalent bond: Square well potential
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Covalent bond

Energy of a particle confined to 
a cube  L  L  L

Energy of a particle confined to 
a cube  L  L  2L

Decrease in energy:

For L = 0.2 nm      E = 14 eV
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Two electrons



Polar  bonds

Partly covalent and partly ionic. The more electronegative element 
will have more negative charge.



Sigma bonds

Sigma bond between two s orbitals

Sigma bond between  s and  p orbitals

Sigma bond between two p orbitals

The angular momentum of a sigma orbital around the interatomic axis is 
zero. A molecule can twist around a sigma bond. 



Pi bonds

Pi bond between two p orbitals

A molecule cannot twist around a Pi bond.



Single bond / double bond / triple bonds

Single bond : Two electrons are shared, sigma bond

Double bond : Four electrons are shared, sigma bond + pi bond

Triple bond : Six electrons are shared, sigma bond + 2 pi bonds



Hybrid orbitals

isolated carbon atom

In molecules, carbon 
forms sp, sp2, and sp3

orbitals.
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sp3 hybrid orbitals 109o
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s - sp3
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In this molecular orbital, the coefficients of these 4 atomic orbitals 
are about c2s = 1, c2px = -1, c2py = -1, c2pz = 1.





sp2 hybrid orbitals   120o

The four orbitals are sp2,sp2, sp2, p
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Graphene
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sp hybrid orbitals

The four orbitals are sp, sp, p, p
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Examples of bonds

s - sp2

C C
H H

H H

sp2 - sp2, p-p

ethene

butadiene

C CH H

s-sp s-sp

sp-sp, p-p, p-p

acetylene

benzene

better described by molecular 
orbitals than by bonds



Symmetries

Molecules can be classified by their symmetries. The 
eigenfunctions of the Hamiltonian will also be eigenfunctions of 
the symmetry operators. 

Symmetries belong to a group. for A, B  G, AB  G



Point symmetries
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If one point remains fixed during transformation, symmetries can be 
represented by 33 matrices.

AB  G for A, B  G

Rotation about the x axis by angle : 



http://symmetry.otterbein.edu/gallery/index.html



http://lamp.tu-graz.ac.at/~hadley/ss2/crystalphysics/crystalclasses/crystalclasses.html


