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Student projects

Use the electron diffraction or LEED programs to
reproduce results from the scientific literature. (To test the
programs.)

Write a program that calculates the neutron diffraction or
the helium scattering structure factors.
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The quantization of the electromagnetic field

Wave nature and the particle nature of light

Unification of the laws for electricity and
magnetism (described by Maxwell's equations) and
light

Quantization of the harmonic oscillator
Planck's radiation law

Serves as a template for the quantization of
phonons, magnons, plasmons, electrons, spinons,
holons and other quantum particles that inhabit
solids.



Maxwell's equations
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In vacuum the source terms J and p are zero.



The vector potential
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The wave eqguation
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Using the identity VXV x A= V(V- A) ~V2A
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normal mode solutions have the form: A(F,t) = Acos(K - T — ait)



Normal mode solutions

-
wave equation: C2V2 A = @_A
at2

«—Normalschwingungen

normal mode Rx,= ry -
solution: A(r,1) = ACOS(k T —at) oder Normalmoden

put the solution into the wave equation

ck’ A=’ A

dispersion relation——— = ‘ IZ‘
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EM waves propagating in the x direction

A= A cos(k Xx—at)?
The electric and magnetic fields are

E = —%A = —wA, sin(K X — at)2

B=VxA=Kk A sin(k x—at)y




Quantization (using a trick)

The wave equation for a single mode.
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The equation for a single mode is mathematically equivalent to:
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Quantization

Classical mathematical equivalence — quantum mathematical equivalence

E=ho(j+1) j=0,1,2...

K
w=,|—
m
Rewriting this in terms of the electromagnetic field variables:

Kk cki meo 1

E=ho(j+1) j=0,12...

W= C‘IZ‘ J is the number of photons

— in that mode

Dispersion relation



Boundary conditions

fixed boundary conditions | periodic boundary conditions




Counting the normal modes

periodic boundary conditions
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Density of states
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All states in the same shell have the same frequency.



Density of states
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Number of states 3
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between k and k+dk = 2— - dk = L’D(k)dk
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for a box of size L3. / (L)

polarizations

D(K) = k?/n? = density of states/m?



Density of states

The number of states per unit volume with a wavenumber between K
and k + dk is,
k2
Dk)dk = 3 dk

o = ck A =27/K
do =cdk dA=-2r/k?dk

The number of states per unit volume with a frequency between ®
and o + do is,
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dw.

D(w)dw = D(k)dk =

The number of states per unit volume with a wavelength between A
and A + dA is,

D(A)d A = D(k)dk = i—fdz



Photons are Bosons

The mean number of bosons is given by the Bose-Einstein factor.
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Planck's radiation law

The energy density between A and A + dA is the energy E = hf = hc/A of

a mode times the density of modes, times the mean number of photons
in that mode.
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Planck's radiation law, Wien's law

Planck's radiation law is often expressed in terms of the intensity

27he? 1

ZS ehC/ AkgT

1(A) =

ldﬂ W/m®

Differentiate to find the position of the peak

Wien's law: A .. T=0.0028977m K



Stefan - Boltzmann law

Integrate intensity over all wavelengths
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Integrating the energy spectral density over all wavelengths
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Thermodynamic quantities
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Thermodynamic quantities

oF 4oVT 4 B 4oT*
oV 3C 3C

N/m’

Radiation Pressure: P = _—

Momentum of a photon: ~ [§ = ik



Recipe for the quantization of fields

Determine the classical normal modes. If the equations are
nonlinear, linearize the equations. The nonlinear terms can be
included later as perturbations.

Calculate the density of states (density of normal modes per energy).

Quantize the states.

Knowing the distribution of the quantum states, deduce
thermodynamic quantities.



Photons, phonons, magnons, plasmons, ...

We quantized the wave equation.
The wave equation describes the motion of light waves, sound
waves, plasma waves, waves in the magnetization, waves in the

electric polarization, ...

The density of states 1s different in 1 and 2 dimensions: waves on a
string (carbon nanotubes), waves at a surface, waves at an interface.

Sound waves have 3 polarizations, light waves have 2.



Density of states
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3-D

Wave Equation
¢ = speed of light
A= jth component of the vector potential

J(dA, dA, dPA) 44
¢ + + =
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FEigenfunction solutions
k = wavenumber
o = angular frequency
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Light in a layered material
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The dielectric constant and speed of light are different for the two layers.

metal contact
p* GaAs contact layer

upper Bragg reflector
30 periods p-AlGaAs/Gahs

canfinement layer 120 nm AlGaAs
quantum well 8.0 nm InGaAs
QW barrier 8.0 nm GaAs

quantum well 8.0 nm InGaAs
QW barrier 8.0 nm GaAs
quantum well 8.0 nm InGaAs
confinement layer 120 nm AlGass

lower Bragg reflector
17.5 periods n-AlAs/GaAs
n-GaAs substrate

Distributed Bragg reflector



Light in a layered material

2 2
Wave equation in a periodic medium c2 () 0 AJ- B 19 Aj
ot
Separation of variables A (X,t) = £(x)e
2 2
Hill's equation d §(ZX) __ 250 E(X)
dx c (X)

Normal modes don't have a clearly defined wavelength.

2nd order linear differential equation with periodic coefficients.
Mathematically equivalent to the time independent Schrodinger equation.

Py o
“om T de =(E-V(X))w(x)




