Hydrogen wavefunctions

quantum numbers n, l, m
$l=0 \ldots n-1$
$m=-1 . . .0 . . .1$
$l=0 \rightarrow \mathrm{~s}$
$l=1 \rightarrow \mathrm{p}$
$l=2 \rightarrow \mathrm{~d}$
$l=3 \rightarrow \mathrm{f}$

$$
\begin{gathered}
\psi_{1 s}=\frac{1}{\sqrt{\pi a_{0}^{3}}} e^{-\frac{r}{a_{0}}}, \\
\psi_{2 s}=\frac{1}{4 \sqrt{2 \pi a_{0}^{3}}}\left(2-\frac{r}{a_{0}}\right) e^{-\frac{r}{2 a_{0}}}, \\
\psi_{2 p x}=\frac{1}{8 \sqrt{\pi a_{0}^{3}}} \frac{r}{a_{0}} e^{-\frac{r}{2 a_{0}}} \sin \theta \cos \varphi, \\
\psi_{2 p y}=\frac{1}{8 \sqrt{\pi a_{0}^{3}}} \frac{r}{a_{0}} e^{-\frac{r}{2 a_{0}}} \sin \theta \sin \varphi, \\
\psi_{2 p z}=\frac{1}{4 \sqrt{2 \pi a_{0}^{3}}} \frac{r}{a_{0}} e^{-\frac{r}{2 a_{0}}} \cos \theta .
\end{gathered}
$$

Radial distribution function $P(r)=4 \pi r^{2}|\Psi(r)|^{2} d r$

Approximate wavefunction

Often in molecular or solid state physics we know the Hamiltonian but we can't solve the Schrödinger equation associated with this Hamiltorian. In these cases we often guess a solution and then calculate the corresponding energy.

Consider the Hamiltonian for a hydrogen atom. In spherical coordinates it is,

$$
H \Psi=\frac{-\hbar^{2}}{2 m}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Psi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \Psi}{\partial \varphi^{2}}\right]-\frac{e^{2}}{4 \pi \varepsilon_{0} r} \Psi
$$

Find the expectation value of the energy,

$$
\langle E\rangle=\frac{\langle\Psi| H|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

for the wavefunction

$$
\Psi=\exp \left(\frac{-r^{2}}{a_{0}^{2}}\right)
$$

Note that this wavefunction is not an eigenfunction of the Hamiltonian. Here $a_{0}=5.3 \times 10^{-11} \mathrm{~m}$ is the Bohr radius.
(You may use a computer algebra program to solve this problem.)

$$
E=\frac{\langle\Psi| H|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=\frac{\iiint \Psi^{*}(r, \theta, \varphi) H \Psi(r, \theta, \varphi) r^{2} \sin \theta d r d \theta d \varphi}{\iiint \Psi^{*}(r, \theta, \varphi) \Psi(r, \theta, \varphi) r^{2} \sin \theta d r d \theta d \varphi}
$$

Helium atom

$$
\frac{-\hbar^{2}}{2 m}\left(\nabla_{1}^{2} \Psi+\nabla_{2}^{2} \Psi\right)-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\overrightarrow{r_{1}}\right|} \Psi-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{2}\right|} \Psi+\frac{e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{1}-\vec{r}_{2}\right|} \Psi=E \Psi
$$

$\left|\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)\right|^{2} \quad \begin{aligned} & \text { is the probability to find one of the electrons at } r_{1} \\ & \text { and the other one at } r_{2} .\end{aligned}$

Helium atom

neglect the electron-electron interaction term

$$
H_{r e d}^{H e}=\frac{-\hbar^{2}}{2 m}\left(\nabla_{1}^{2} \Psi+\nabla_{2}^{2} \Psi\right)-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{1}\right|} \Psi-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{2}\right|} \Psi+\frac{e^{2}}{4 \pi \varepsilon_{0}\left|r_{1}-\vec{r}_{2}\right|} \Psi=E \Psi
$$

assume a product wave function

$$
\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\phi_{1}\left(\vec{r}_{1}\right) \phi_{2}\left(\vec{r}_{2}\right)
$$

Separation of variables (Trennung der Veränderlichen)

$$
\begin{gathered}
\frac{-\hbar^{2}}{2 m} \nabla_{1}^{2} \phi_{1} \phi_{2}-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\overrightarrow{r_{1}}\right|} \phi_{1} \phi_{2}=\frac{\hbar^{2}}{2 m} \nabla_{2}^{2} \phi_{1} \phi_{2}+\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{2}\right|} \phi_{1} \phi_{2}+E \phi_{1} \phi_{2} \\
\text { divide by } \phi_{1} \phi_{2} \\
\frac{-\hbar^{2}}{2 m \phi_{1}} \nabla_{1}^{2} \phi_{1}-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\overrightarrow{r_{1}}\right|}=C=\frac{\hbar^{2}}{2 m \phi_{2}} \nabla_{2}^{2} \phi_{2}+\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{2}\right|}+E \\
\frac{-\hbar^{2}}{2 m} \nabla_{1}^{2} \phi_{1}-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\overrightarrow{r_{1}}\right|} \phi_{1}=C \phi_{1} \quad \frac{-\hbar^{2}}{2 m} \nabla_{2}^{2} \phi_{2}-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\overrightarrow{r_{2}}\right|} \phi_{2}=(E-C) \phi_{2}
\end{gathered}
$$

Atomic orbitals

$$
\begin{aligned}
& \phi_{1 s}^{Z}=\sqrt{\frac{Z^{3}}{\pi a_{0}^{3}}} e^{-\frac{Z r}{a_{0}}} \text {, } \\
& \phi_{2 s}^{Z}=\frac{1}{4} \sqrt{\frac{Z^{3}}{2 \pi a_{0}^{3}}}\left(2-\frac{Z r}{a_{0}}\right) e^{-\frac{Z r}{2 a_{0}}}, \\
& Z \text { is the } \\
& \text { number of } \\
& \phi_{2 p x}^{Z}=\frac{1}{8} \sqrt{\frac{Z^{3}}{\pi a_{0}^{3}}} \frac{Z r}{a_{0}} e^{-\frac{Z r}{2 r_{0}}} \sin \theta \cos \varphi, \\
& \phi_{2 p y}^{Z}=\frac{1}{8} \sqrt{\frac{Z^{3}}{\pi a_{0}^{3}}} \frac{Z r}{a_{0}} e^{-\frac{Z r}{2 a_{0}}} \sin \theta \sin \varphi, \\
& \phi_{2 p z}^{Z}=\frac{1}{4} \sqrt{\frac{Z^{3}}{2 \pi a_{0}^{3}}} \frac{Z r}{a_{0}} e^{-\frac{Z r}{2 a_{0}}} \cos \theta, \\
& E=-\frac{Z^{2} m e^{4}}{32 \pi^{2} \epsilon_{0}^{2} \hbar^{2} n^{2}}=-\frac{13.6 Z^{2}}{n^{2}} \mathrm{eV} .
\end{aligned}
$$

Atomic orbitals

http://lampx.tugraz.at/~hadley/ss1/molecules/atoms/AOs.php

Atomic orbitals:

2 s						2 px	2 py	2pz
3s						3 px	3py	3pz
4s	3d xy	3d yz	3d xz	3d z^{2}	3d $x^{2}-y^{2}$	4 px	4py	4pz
5s	4d xy	4d yz	4d xz	4d z^{2}	4d $x^{2}-y^{2}$	5px	5py	5pz
6 s	5d xy	5d yz	5d xz	5d z^{2}	5d $x^{2}-y^{2}$	6 px	6 py	6pz

| $4 f$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $5 f$ |

$$
\left\langle\phi_{m}\right| H\left|\phi_{n}\right\rangle=\frac{-\hbar^{2}}{2 m}\left\langle\phi_{m} \mid \nabla^{2} \phi_{n}\right\rangle-\frac{2 e^{2}}{4 \pi \varepsilon_{0}}\left\langle\phi_{m}\right| \frac{1}{\mid \vec{r}}\left|\phi_{n}\right\rangle
$$

Indistinguishable particles

$$
\begin{gathered}
\left|\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)\right|^{2}=\left|\Psi\left(\vec{r}_{2}, \vec{r}_{1}\right)\right|^{2} \\
\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)= \pm \Psi\left(\vec{r}_{2}, \vec{r}_{1}\right)
\end{gathered}
$$

bosons $\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\Psi\left(\vec{r}_{2}, \vec{r}_{1}\right)$
integer spin:
photons, phonons, ${ }^{4} \mathrm{He}$
fermions $\quad \Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=-\Psi\left(\vec{r}_{2}, \vec{r}_{1}\right)$
half integer spin:
electrons, neutrons, protons, ${ }^{3} \mathrm{He}$

Spin

Spin appears naturally in the relativistic formulation of quantum mechanics but in the nonrelativistic formulation, we just add the spins states.

$$
\begin{aligned}
& \uparrow=\text { spin up } \\
& \downarrow=\text { spin down }
\end{aligned}
$$

Spin orbitals: $\phi_{1 s} \uparrow, \phi_{1 s} \downarrow, \phi_{2 s} \uparrow, \phi_{2 s} \downarrow, \cdots$

Slater determinants

The antisymmetric N electron wave function can be written,

$$
\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \cdots, \vec{r}_{N}\right)=\frac{1}{\sqrt{N!}}\left|\begin{array}{llll}
\phi_{1 s} \uparrow\left(\vec{r}_{1}\right) & \phi_{1 s} \downarrow\left(\vec{r}_{1}\right) & \cdots & \phi_{N} \uparrow\left(\vec{r}_{1}\right) \\
\phi_{1 s} \uparrow\left(\vec{r}_{2}\right) & \phi_{1 s} \downarrow\left(\vec{r}_{2}\right) & \cdots & \phi_{N} \uparrow\left(\vec{r}_{2}\right) \\
\vdots & \vdots & & \vdots \\
\phi_{1 s} \uparrow\left(\vec{r}_{N}\right) & \phi_{1 s} \downarrow\left(\vec{r}_{N}\right) & \cdots & \phi_{N} \uparrow\left(\vec{r}_{N}\right)
\end{array}\right| .
$$

Exchanging two columns changes the sign of the determinant.
If two columns are the same, the determinant is zero $=$ Pauli exclusion.
Dirac notation: $\quad \Psi\left(\vec{r}_{1}, \vec{r}_{2}, \cdots, \vec{r}_{N}\right)=\left|\phi_{1 s} \uparrow, \phi_{1 s} \downarrow, \cdots, \phi_{N} \uparrow\right\rangle$

Helium ground state

$$
H_{\text {total }}=\frac{-\hbar^{2}}{2 m}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right)-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{1}\right|}-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{2}\right|}+\frac{e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{1}-\vec{r}_{2}\right|}
$$

Approximate antisymmetrized wave function (neglecting electronelectron interactions)

$$
\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
\phi_{1 s}^{H e}\left(\vec{r}_{1}\right) \uparrow & \phi_{1 s}^{H e}\left(\vec{r}_{1}\right) \downarrow \\
\phi_{1 s}^{H e}\left(\vec{r}_{2}\right) \uparrow & \phi_{1 s}^{H e}\left(\vec{r}_{2}\right) \downarrow
\end{array}\right|=\frac{\phi_{1 s}^{H e}\left(\vec{r}_{1}\right) \phi_{1 s}^{H e}\left(\vec{r}_{2}\right)}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
$$

Energy neglecting $e-e$ interactions

$$
E=2 \times \frac{-13.6 Z^{2}}{n^{2}}=-108.8 \mathrm{eV}
$$

$\begin{aligned} & \begin{array}{l}\text { Approximate ground state } \\ \text { evaluated with the total } \\ \text { Hamiltonian }\end{array}\end{aligned} \quad E=\frac{\langle\Psi| H_{\text {total }}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=-74.83 \mathrm{eV}$

Matrix elements

$$
E_{0}^{\mathrm{He}} \approx \frac{\left\langle\Psi_{0}^{\mathrm{He}}\right| H_{\mathrm{total}}^{\mathrm{He}}\left|\Psi_{0}^{\mathrm{He}}\right\rangle}{\left\langle\Psi_{0}^{\mathrm{He}} \mid \Psi_{0}^{\mathrm{He}}\right\rangle}
$$

$\frac{\iiint \iiint \Psi^{*}\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right) H \Psi\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right) d x_{1} d y_{1} d z_{1} d x_{2} d y_{2} d z_{2}}{\iiint \iiint \Psi^{*}\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right) \Psi\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right) d x_{1} d y_{1} d z_{1} d x_{2} d y_{2} d z_{2}}$

Helium ground state

Try other wave functions in the full Hamiltonian

$$
\begin{aligned}
& H_{\text {total }}=\frac{-\hbar^{2}}{2 m}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right)-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{1}\right|}-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{2}\right|}+\frac{e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{1}-\vec{r}_{2}\right|} \\
& \Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\exp \left(\frac{-\alpha\left(r_{1}+r_{2}\right)}{a_{0}}\right) \times\left(\text { polynomial in } r_{1} \text { and } r_{2}\right)
\end{aligned}
$$

Electron screening makes the wave function larger

$$
E=\frac{\langle\Psi| H_{\text {total }}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

4.1 Helium

The results of the total energy of the helium ground state for different effective nuclear charges α are plotted in 1 . The minimum (and therfore best estimate) lies at

$$
\begin{align*}
& \alpha=(1.685 \pm 0.005) \\
& E=(-77.50 \pm 0.03) \mathrm{eV} \tag{14}
\end{align*}
$$

Student project Michael Scherbela, 2014

Helium ground state

wavefunction	parameters	energy eV
$e^{-Z\left(r_{1}+r_{2}\right)}$	$Z=2$	-74.83
$e^{-\alpha\left(r_{1}+r_{2}\right)}$	$\alpha=1.6875$	-77.4885
$\psi\left(r_{1}\right) \psi\left(r_{2}\right)$	best $\psi(r)$	-77.8703
$e^{-\alpha\left(r_{1}+r_{2}\right)}\left(1+c r_{12}\right)$	best α, c	-78.6714
Hylleraas (1929)	10 parameters	-79.0118
Pekeris (1959)	1078 parameters	-79.0142

The true wave function cannot be written as a product of two one-electron wave functions.

Helium excited states

One electron in 1 s and one in $2 \mathrm{~s}, \quad \uparrow \uparrow, \downarrow \downarrow, \downarrow \uparrow$, and $\uparrow \downarrow$

$$
\begin{aligned}
& \Psi_{I}=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
\phi_{1 s}^{\mathrm{He}} \uparrow\left(\vec{r}_{1}\right) & \phi_{2 s}^{\mathrm{He}} \uparrow\left(\vec{r}_{1}\right) \\
\phi_{1 s}^{\mathrm{He}} \uparrow\left(\vec{r}_{2}\right) & \phi_{2 s}^{\mathrm{H}} \uparrow\left(\vec{r}_{2}\right)
\end{array}\right|=\frac{1}{\sqrt{2}}\left(\phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)-\phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)\right) \uparrow \uparrow, \\
& \Psi_{I I}=\frac{1}{\sqrt{2}}\left|\begin{array}{cc}
\phi_{1 s}^{\mathrm{He}} \downarrow\left(\vec{r}_{1}\right) & \phi_{2 s}^{\mathrm{He}} \downarrow\left(\vec{r}_{1}\right) \\
\phi_{1 s}^{\mathrm{H}} \downarrow\left(\vec{r}_{2}\right) & \phi_{2 s}^{\mathrm{He}} \downarrow\left(\vec{r}_{2}\right)
\end{array}\right|=\frac{1}{\sqrt{2}}\left(\phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)-\phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)\right) \downarrow \downarrow, \\
& \Psi_{I I I}=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
\phi_{1 s}^{\mathrm{He}} \uparrow\left(\vec{r}_{1}\right) & \phi_{2 s}^{\mathrm{He}} \downarrow\left(\vec{r}_{1}\right) \\
\phi_{1 s}^{\mathrm{He}} \uparrow\left(\vec{r}_{2}\right) & \phi_{2 s}^{\mathrm{He}} \downarrow\left(\vec{r}_{2}\right)
\end{array}\right|=\frac{1}{\sqrt{2}}\left(\phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \uparrow \phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{2}\right) \downarrow-\phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \downarrow \phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{2}\right) \uparrow\right), \\
& \Psi_{I V}=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
\phi_{1 s}^{\mathrm{He}} \downarrow\left(\vec{r}_{1}\right) & \phi_{2 s}^{\mathrm{He}} \uparrow\left(\vec{r}_{1}\right) \\
\phi_{1 s}^{\mathrm{He}} \downarrow\left(\vec{r}_{2}\right) & \phi_{2 s}^{\mathrm{He}} \uparrow\left(\vec{r}_{2}\right)
\end{array}\right|=\frac{1}{\sqrt{2}}\left(\phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \downarrow \phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{2}\right) \uparrow-\phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \uparrow \phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{2}\right) \downarrow\right) . \\
& E=\frac{\langle\Psi| H_{r e d}^{H e}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=-\frac{13.6^{*} 2^{2}}{1^{2}}-\frac{13.6^{*} 2^{2}}{2^{2}}=-68 \mathrm{eV}
\end{aligned}
$$

The antisymmetric solution $\Psi=0$ for $\vec{r}_{1}=\vec{r}_{2}$.

Construct the Hamiltonian matrix

Schrödinger equation

$$
H_{\text {total }}^{H e}\left(c_{I} \Psi_{I}+c_{I I} \Psi_{I I}+c_{I I I} \Psi_{I I I}+c_{I V} \Psi_{I V}\right)=E\left(c_{I} \Psi_{I}+c_{I I} \Psi_{I I}+c_{I I I} \Psi_{I I I}+c_{I V} \Psi_{I V}\right)
$$

Multiply from left by Ψ_{i}.

$$
\left[\begin{array}{llll}
H_{I, I} & H_{I, I I} & H_{I, I I I} & H_{I, I V} \\
H_{I I, I} & H_{I I, I I} & H_{I I, I I I} & H_{I I I V} \\
H_{I I, I} & H_{I I, I I} & H_{I I I, I I} & H_{I I I, I V} \\
H_{I V, I} & H_{I V, I I} & H_{I V, I I I} & H_{I V, I V}
\end{array}\right]\left[\begin{array}{c}
c_{I} \\
c_{I I} \\
c_{I I I} \\
c_{I V}
\end{array}\right]=E\left[\begin{array}{c}
c_{I} \\
c_{I I} \\
c_{I I I} \\
c_{I V}
\end{array}\right]
$$

$$
H_{i, j}=\left\langle\Psi_{i}\right| H_{\text {total }}^{H e}\left|\Psi_{j}\right\rangle
$$

Student project: determine this matrix

Transform to symmetric and antisymmetric orbital solutions

$$
\begin{gathered}
\Psi_{I}=\frac{1}{\sqrt{2}}\left(\phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)-\phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)\right) \uparrow \uparrow, \\
\Psi_{I I}=\frac{1}{\sqrt{2}}\left(\phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)-\phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)\right) \downarrow \downarrow, \\
\Psi_{I I I}=\frac{1}{\sqrt{2}}\left(\phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \uparrow \phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{2}\right) \downarrow-\phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \downarrow \phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{2}\right) \uparrow\right), \\
\Psi_{I V}=\frac{1}{\sqrt{2}}\left(\phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \downarrow \phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{2}\right) \uparrow-\phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \uparrow \phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{2}\right) \downarrow\right) .
\end{gathered}
$$

$$
\Psi_{V}=\frac{1}{\sqrt{2}}\left(\Psi_{I I I}+\Psi_{I V}\right)=\frac{1}{2}\left(\left(\phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)-\phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)\right)(\uparrow \downarrow+\downarrow \uparrow)\right.
$$

$$
\Psi_{V I}=\frac{1}{\sqrt{2}}\left(\Psi_{I I I}-\Psi_{I V}\right)=\frac{1}{2}\left(\left(\phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)+\phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)\right)(\uparrow \downarrow-\downarrow \uparrow)\right.
$$

Helium excited states

$$
\begin{aligned}
& H_{\text {red }}^{\mathrm{He}} \\
& H_{\text {total }}^{\mathrm{He}} \\
& \text { exact } \\
& \frac{1 \mathrm{~s}^{1} 2 \mathrm{~s}^{1}-55.98 \mathrm{eV}}{\frac{1 \mathrm{~s}^{1} 2 \mathrm{~s}^{1}}{}-58.19 \mathrm{eV}} \\
& \begin{array}{lll}
1 \mathrm{~s}^{1} 2 \mathrm{~s}^{1} & 2^{1} \mathrm{~S}-58.37 \mathrm{eV} & \text { singlet } \\
1 \mathrm{~s}^{1} 2 \mathrm{~s}^{1} & 2^{1} \mathrm{~S}-59.16 \mathrm{eV} & \text { triplet }
\end{array} \\
& \begin{array}{l}
1 \mathrm{~s}^{1} 2 \mathrm{~s}^{1} \quad-68 \mathrm{eV} \\
\hline
\end{array} \\
& \frac{-13.6 Z^{2}}{n^{2}} \mathrm{eV} \\
& 1 \mathrm{~s}^{2} \quad-77.49 \mathrm{eV} \\
& 1 \overline{s^{2}} 1^{1} \mathrm{~S} \quad-78.99 \mathrm{eV} \text { singlet }
\end{aligned}
$$

Energy Levels of Neutral Helium (He I)

Select an element to access data

${ }^{1} \mathrm{H}$																${ }^{2} \mathrm{He}$
${ }^{3} \mathrm{Li}$	${ }^{4} \mathrm{Be}$										$5_{\text {B }}$	${ }^{6} \mathrm{C}$	${ }^{7} \mathrm{~N}$	8_{0}	${ }^{9} \mathrm{~F}$	${ }^{10} \mathrm{Ne}$
${ }^{11} \mathrm{Na}$	${ }^{12} \mathrm{Mg}$										${ }^{13}{ }_{\text {Al }}$	${ }^{14} \mathrm{Si}$	${ }^{15} \mathrm{P}$	${ }^{16} \mathrm{~S}$	${ }^{17} \mathrm{Cl}$	${ }^{18_{\text {Ar }}}$
${ }^{19} \mathrm{~K}$	${ }^{20} \mathrm{Ca}{ }^{21} \mathrm{Sc}$	${ }^{22_{\mathrm{Ti}}}$	$\left.{ }^{23} \mathrm{~V}\right\|^{2}$	${ }^{24} \mathrm{Cr}{ }^{2}$	${ }^{25} \mathrm{Mn}$	${ }^{26} \mathrm{Fe}{ }^{2}$	${ }^{27} \mathrm{Co}$	${ }^{28} 8_{\mathrm{Ni}}$	${ }^{29} \mathrm{Cu}$	${ }^{30} \mathrm{Zn}$	${ }^{31} \mathrm{Ga}$	${ }^{32} \mathrm{Ge}$	${ }^{33} \mathrm{AS}$	${ }^{34} \mathrm{Se}$	${ }^{35} \mathrm{Br}$	${ }^{36} \mathrm{Kr}$
${ }^{37} \mathrm{Rb}$	${ }^{38} \mathrm{Sr}{ }^{39} \mathrm{Y}$	${ }^{40} \mathrm{zr}{ }^{4}$	${ }^{41}{ }_{\mathrm{Nb}}{ }^{4}$	${ }^{42} \mathrm{MO}$	${ }^{43} \mathrm{TC}$	${ }^{44} \mathrm{Ru}$	${ }^{45} \mathrm{Rh}$	${ }^{46} \mathrm{Pd}$	${ }^{47} \mathrm{Ag}$	${ }^{48} \mathrm{Cd}$	${ }^{49}$ In	${ }^{50} \mathrm{Sn}$	${ }^{51} \mathrm{Sb}$	${ }^{52} \mathrm{Te}$	${ }^{53}$ I	${ }^{54} \mathrm{Xe}$
${ }^{55} \mathrm{Cs}$	${ }^{56} \mathrm{Ba}$	$\left.{ }^{72} \mathrm{Hf}\right\|^{7}$	${ }^{73} \mathrm{Ta}$	${ }^{74}$ W5	${ }^{75} \mathrm{Re}$	${ }^{76} \mathrm{Os}{ }^{7}$	${ }^{77}$ Ir	${ }^{78} \mathrm{Pt}$	${ }^{79} \mathrm{Au}$	${ }^{80} \mathrm{Hg}$	${ }^{81}{ }_{\text {T1 }}$	${ }^{82} \mathrm{~Pb} \mid$	${ }^{83} \mathrm{Bi}$	${ }^{84} \mathrm{PO}$	At	${ }^{86} \mathrm{Rn}$
${ }^{87} \mathrm{Fr}$	${ }^{88} \mathrm{Ra} \mid+$															
* Lanthanides		${ }^{57} \mathrm{La}{ }^{5}$	${ }^{58} \mathrm{Ce}{ }^{5}$	${ }^{59} \mathrm{Pr}$	${ }^{60} \mathrm{Nd}$	${ }^{61} \mathrm{Pm}$	${ }^{62} \mathrm{Sm}$	${ }^{63} \mathrm{Eu}$	${ }^{64} \mathrm{Gd}$	${ }^{65} \mathrm{~Tb}$	${ }^{66}$ Dy	${ }^{67} \mathrm{Ho}$	${ }^{68}$ Er	Tm	Yb	${ }^{71} \mathrm{Lu}$
${ }^{+}$Actinides		$889^{89}{ }^{\text {c }}{ }^{9}$	${ }^{90} \mathrm{Th}{ }^{9}$	${ }^{91} \mathrm{~Pa}$	${ }^{92} \mathrm{U}$	${ }^{93} \mathrm{~Np}$ \|	${ }^{94} \mathrm{Pu}$	${ }^{95} \mathrm{Amm}$	${ }^{96} \mathrm{Cm}$	${ }^{97} \mathrm{BK} \mid$	${ }^{98} \mathrm{Cf}$	${ }^{99}$ Es				

$E=h f=h c / \lambda$

Names refer to approximate solutions

http://physics.nist.gov/PhysRefData/Handbook/Tables/heliumtable5.htm

Configuration	Term	J	Level (cm^{-1})	Ref.
$1 s^{2}$	${ }^{1} \mathrm{~S}$	0	0.000	M02
1 s 2 s	${ }^{3} \mathrm{~S}$	1	159855.9745	M02
1 s 2 s	${ }^{1} \mathrm{~S}$	0	166277.4403	M02
$1 s 2 p$	${ }^{3} \mathrm{P}^{\circ}$	2	169086.7666	M02
		1	169086.8430	M02
		0	169087.8309	M02
$1 s 2 p$	${ }^{1} \mathrm{P}^{\circ}$	1	171134.8970	M02
1 s 3 s	${ }^{3} \mathrm{~S}$	1	183236.7918	M02
1 s 3 s	${ }^{1} \mathrm{~S}$	0	184864.8294	M02
$1 s 3 p$	${ }^{3} \mathrm{P}^{\circ}$	2	185564.5620	M02
		1	185564.5840	M02
		0	185564.8547	M02
1 s 3 d	${ }^{3} \mathrm{D}$	3	186101.5463	M02
		2	186101.5488	M02
		1	186101.5930	M02
1 s 3 d	${ }^{1} \mathrm{D}$	2	186104.9668	M02
1 s 3 p	${ }^{1} \mathrm{P}{ }^{\circ}$	1	186209.3651	M02
$1 s 4 p$	${ }^{1} \mathrm{P}^{\circ}$	1	191492.7120	M02
$\mathrm{He} \operatorname{II}\left({ }^{2} \mathrm{~S}_{1 / 2}\right)$	Limit		198310.6691	M02

Exchange (Austauschwechselwirking)

$$
\begin{gathered}
\psi_{A}\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{1}{\sqrt{2}}\left(\phi_{1}\left(\vec{r}_{1}\right) \phi_{2}\left(\vec{r}_{2}\right)-\phi_{1}\left(\vec{r}_{2}\right) \phi_{2}\left(\vec{r}_{1}\right)\right) \\
\left\langle\psi_{A}\right| H\left|\psi_{A}\right\rangle=\frac{1}{2}\left[\left\langle\phi_{1}\left(\vec{r}_{1}\right) \phi_{2}\left(\vec{r}_{2}\right)\right| H\left|\phi_{1}\left(\vec{r}_{1}\right) \phi_{2}\left(\vec{r}_{2}\right)\right\rangle-\left\langle\phi_{1}\left(\vec{r}_{1}\right) \phi_{2}\left(\vec{r}_{2}\right)\right| H\left|\phi_{1}\left(\vec{r}_{2}\right) \phi_{2}\left(\vec{r}_{1}\right)\right\rangle\right. \\
\left.-\left\langle\phi_{1}\left(\vec{r}_{2}\right) \phi_{2}\left(\vec{r}_{1}\right)\right| H\left|\phi_{1}\left(\vec{r}_{1}\right) \phi_{2}\left(\vec{r}_{2}\right)\right\rangle+\left\langle\phi_{1}\left(\vec{r}_{2}\right) \phi_{2}\left(\vec{r}_{1}\right)\right| H\left|\phi_{1}\left(\vec{r}_{2}\right) \phi_{2}\left(\vec{r}_{1}\right)\right\rangle\right]
\end{gathered}
$$

$$
\psi_{S}\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{1}{\sqrt{2}}\left(\phi_{1}\left(\vec{r}_{1}\right) \phi_{2}\left(\vec{r}_{2}\right)+\phi_{1}\left(\vec{r}_{2}\right) \phi_{2}\left(\vec{r}_{1}\right)\right)
$$

$$
\begin{aligned}
& \left\langle\psi_{S}\right| H\left|\psi_{S}\right\rangle=\frac{1}{2}\left[\left\langle\phi_{1}\left(\vec{r}_{1}\right) \phi_{2}\left(\vec{r}_{2}\right)\right| H\left|\phi_{1}\left(\vec{r}_{1}\right) \phi_{2}\left(\vec{r}_{2}\right)\right\rangle+\left\langle\phi_{1}\left(\vec{r}_{1}\right) \phi_{2}\left(\vec{r}_{2}\right)\right| H\left|\phi_{1}\left(\vec{r}_{2}\right) \phi_{2}\left(\vec{r}_{1}\right)\right\rangle\right. \\
& \left.+\left\langle\phi_{1}\left(\vec{r}_{2}\right) \phi_{2}\left(\vec{r}_{1}\right)\right| H\left|\phi_{1}\left(\vec{r}_{1}\right) \phi_{2}\left(\vec{r}_{2}\right)\right\rangle+\left\langle\phi_{1}\left(\vec{r}_{2}\right) \phi_{2}\left(\vec{r}_{1}\right)\right| H\left|\phi_{1}\left(\vec{r}_{2}\right) \phi_{2}\left(\vec{r}_{1}\right)\right\rangle\right]
\end{aligned}
$$

The difference in energy between the ψ_{A} and ψ_{S} is twice the exchange energy.

Exchange

The exchange energy can only be defined when you speak of multi-electron wavefunctions. It is the difference in energy between the symmetric solution and the antisymmetric solution. There is only a difference when the electronelectron term is included. Coulomb repulsion determines the exchange energy.

In ferromagnets, the antisymmetric state has a lower energy. Thus the state with parallel spins has lower energy.

In antiferromagnets, the symmetric state has a lower energy. Neighboring spins are antiparallel.

Many electrons

Consider a gold atom (79 electrons)

$$
\begin{array}{ll}
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m}\left(\frac{d^{2}}{d x_{1}^{2}} \cdots+\frac{d^{2}}{d z_{79}^{2}}\right) \Psi-\frac{79 e^{2}}{4 \pi \varepsilon_{0} r_{j}} \Psi \cdots+\frac{e^{2}}{4 \pi \varepsilon_{0} r_{i j}} \Psi \cdots \\
3 \times 79=237 \text { terms } & 79 \text { terms } \\
\hline & \frac{79 \times 78}{2}=3081 \text { terms }
\end{array}
$$

$\Psi\left(x_{1}, y_{1}, z_{1}, \cdots x_{79}, y_{79}, z_{79}, t\right)$ is a complex function in 237 dimensions

$$
\begin{array}{ll}
\left|\Psi\left(\vec{r}_{1}, \cdots \vec{r}_{N}\right)\right|^{2} \quad & \begin{array}{l}
\text { is the joint probability of finding an electron } \\
\\
\text { at position } r_{1}, r_{2}, \ldots r_{\mathrm{N}}
\end{array}
\end{array}
$$

Numerical solution of the Schrödinger equation for one electron

$$
i \hbar \frac{\partial \Psi}{\partial t}=\frac{-\hbar^{2}}{2 m} \nabla^{2} \Psi-\frac{e^{2}}{4 \pi \varepsilon_{0} r} \Psi
$$

> Discretize Ψ to solve numerically. For one electron $\sim 10^{6}$ elements are needed.

Numerical solution for many electrons

For a numerical solution, divide Hilbert space along each axis into 100 divisions.

$$
100^{237}=10^{474}
$$

There are 10^{68} atoms in the Milky Way galaxy

There are $\sim 10^{80}$ atoms in the observable universe

Intractable problem

We know the equation that has to be solved. We know how to solve it but we don't have the computer resources to calculate the answer.

A Matlab that will calculate the time evolution of an n-electron

http://lamp.tu-graz.ac.at/~hadley/ss1/studentpresentations/2011/n_electrons.m

Quantum computation

Sometimes it is possible to map one intractable problem onto another.

If you map an intractable problem onto a system of interacting electrons and then measure the energy levels of the electron system, you can find solutions to the intractable problem.

Many-electron systems

In such a quantum system, the repeated interactions between particles create quantum correlations, or entanglement. As a consequence, the wave function of the system is a complicated object holding a large amount of information, which usually makes analytical calculations impractical. In fact, many-body theoretical physics ranks among the most computationally intensive fields of science.
http://en.wikipedia.org/wiki/Many-body_problem

The Central Dilemma of Solid State Physics

The Schrödinger explains everything but can explain nothing.

From a fundamental point of view it is impossible to describe electrons in a metal correctly - Ashcroft and Mermin

Neglect the e-e interactions

Consider a gold atom (79 electrons)

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m}\left(\frac{d^{2}}{d x_{1}^{2}} \cdots+\frac{d^{2}}{d z_{79}^{2}}\right) \Psi-\frac{79 e^{2}}{4 \pi \varepsilon_{0} r_{j}} \Psi \cdots+\frac{e^{2}}{4 \pi \varepsilon_{0} x_{i j}} \Psi \cdots=E \Psi \\
= & 237 \text { terms } \quad 79 \text { terms } \quad \frac{79 \times 78}{2}=3081 \text { terms }
\end{aligned}
$$

Out of desperation: We simplify the model for a solid until the Schrödinger can be solved. If the 3081 electron - electron terms are neglected, the equation can be solved exactly and the total wave function is a product of atomic orbitals.

This is called the orbital approximation.

Antisymmetrized product wave functions

$$
\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \cdots, \vec{r}_{79}\right)=A \phi_{1 s}^{79} \uparrow\left(\vec{r}_{1}\right) \phi_{1 s}^{79} \downarrow\left(\vec{r}_{2}\right) \ldots \phi_{6 s}^{79} \uparrow\left(\vec{r}_{79}\right)
$$

The standard first approximation for the many-electron wave-function of any atom is an antisymmetrized product of hydrogen wave functions.

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 4 f^{14} 5 s^{2} 5 p^{6} 5 d^{10} 6 s^{1}
$$

Electron configurations

13 Al aluminium	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$	$=[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}{ }^{1}$
14 Si silicon	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$	$=[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{2}$
15 P phosphorus	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$	$=[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{3}$
16 S sulfur	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$	$=[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{4}$
17 Cl chlorine	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$	$=[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{5}$
18 Ar argon	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$	$=[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$
19 K potassium	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$	$=[\mathrm{Ar}] 4 \mathrm{~s}^{1}$
20 Ca calcium	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$	$=[\mathrm{Ar}] 4 \mathrm{~s}^{2}$
21 Sc scandium	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{1} 4 s^{2}$	$=[\mathrm{Ar}] 3 \mathrm{~d}^{1} 4 \mathrm{~s}^{2}$
22 Ti titanium	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{2} 4 s^{2}$	$=[\mathrm{Ar}] 3 \mathrm{~d}^{2} 4 \mathrm{~s}^{2}$
23 V vanadium	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3} 4 s^{2}$	$=[\operatorname{Ar}] 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{2}$
24 Cr chromium	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{1}$	$=[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}$
25 Mn manganese	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{2}$	$=[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{2}$
26 Fe iron	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2}$	$=[\mathrm{Ar}] 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2}$
27 Co cobalt	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{7} 4 s^{2}$	$=[\mathrm{Ar}] 3 \mathrm{~d}^{7} 4 \mathrm{~s}^{2}$
28 Ni nickel	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8} 4 s^{2}$	$=[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}$
29 Cu copper	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1}$	$=[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1}$
30 Zn zinc	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2}$	$=[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2}$

http://lamp.tu-graz.ac.at/~hadley/ss1/molecules/atoms/review3.php

Filling of electron shells

Ni: $3 d^{8} 4 s^{2} \quad C u: 3 d^{10} 4 s^{1}$

Why isn't Ni $3 d^{9} 4 s^{1}$ or $3 d^{10}$?

You can evaluate the energy of any electron configuration.

$$
\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \cdots, \vec{r}_{28}\right)=\left|\phi_{1 s}^{28} \uparrow\left(\vec{r}_{1}\right), \phi_{1 s}^{28} \downarrow\left(\vec{r}_{2}\right), \ldots, \phi_{3 d}^{28} \uparrow\left(\vec{r}_{27}\right) \phi_{4 s}^{28} \uparrow\left(\vec{r}_{29}\right)\right\rangle
$$

$$
E=\frac{\langle\Psi| H|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

Hund's rules

