Review: Molecules I

Every property of a molecule can be calculated using quantum mechanics.

$$H_{
m mp} = -\sum_i rac{\hbar^2}{2m_e} \,
abla_i^2 - \sum_a rac{\hbar^2}{2m_a} \,
abla_a^2 - \sum_{a,i} rac{Z_a e^2}{4\pi\epsilon_0 |ec{r}_i - ec{r}_a|} + \sum_{i < j} rac{e^2}{4\pi\epsilon_0 |ec{r}_i - ec{r}_j|} + \sum_{a < b} rac{Z_a Z_b e^2}{4\pi\epsilon_0 |ec{r}_a - ec{r}_b|}$$

Make some approximations.

$$H_{
m red} = -\sum_i rac{\hbar^2}{2m_e}
abla_i^2 - \sum_a rac{\hbar^2}{2m_a}
abla_a^2 - \sum_{a,i} rac{Z_a e^2}{4\pi\epsilon_0 |ec{r}_i - ec{r}_a|} + \sum_{i < j} rac{e^2}{4\pi\epsilon_0 |ec{r}_i - ec{r}_j|} + \sum_{a < b} rac{Z_a Z_b e^2}{4\pi\epsilon_0 |ec{r}_i - ec{r}_b|}.$$

$$H_{
m red} = H_{
m mo} + H_{
m mo} + H_{
m mo} + H_{
m mo} + \cdots$$

Molecular orbital Hamiltonian:
$$H_{
m mo} = -rac{\hbar^2}{2m_e}\,
abla^2 - \sum_a rac{Z_a e^2}{4\pi\epsilon_0 |\vec{r}-\vec{r}_a|}$$
.

The exact solution to H_{red} can be constructed from the solutions to H_{mo} .

Review: Molecules II

$$H_{
m mo} = -\,rac{\hbar^2}{2m_e}\,
abla^2 - \sum_a rac{Z_a e^2}{4\pi\epsilon_0 |ec r - ec r_a|}\,.$$

The molecular orbitals are constructed using LCAO.

$$\psi_{
m mo}(ec{r}) = \sum_a \sum_{ao} c_{ao,a} \phi^{Z_a}_{ao} ig(ec{r} - ec{r}_aig).$$

Substitute into $H_{
m mo}\psi_{
m mo}=E\psi_{
m mo}$, construct the Roothaan equations.

The many electron wavefunction is constructed as a Slater determinant.

$$\Psi(\vec{r}_1,\vec{r}_2,\cdots,\vec{r}_N) pprox |\psi_{ ext{mo1}}\uparrow(\vec{r}_1),\psi_{ ext{mo2}}\uparrow(\vec{r}_2),\cdots,\psi_{ ext{moN}}\uparrow(\vec{r}_N)
angle.$$

This is an exact solution to H_{red} and an approximate solution to H_{mp} .

The energy is calculated including the electron-electron interactions.

$$E=rac{\langle\Psi|H_{mp}|\Psi
angle}{\langle\Psi|\Psi
angle}$$

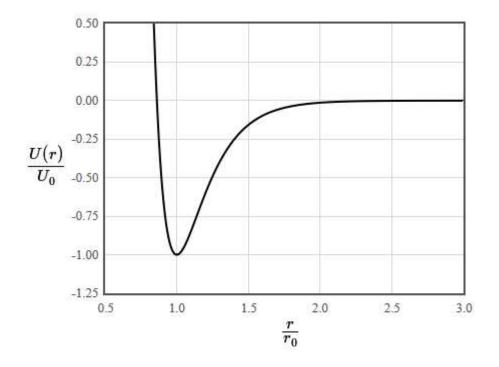
Bond potentials

Morse (covalent)

Lennard - Jones (van der Waals)

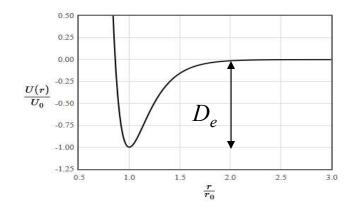
$$U(r) = U_0 \left(e^{-2(r-r_0)/a} - 2e^{-(r-r_0)/a} \right)$$

$$U(r) = 4\varepsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right)$$



Born-Oppenheimer Approximation (part 2)

Use the electronic energy as the potential for the nuclei



For H_2 , the Hamiltonian for the protons is

$$H\Psi(\vec{r}_A, \vec{r}_B) = \frac{-\hbar^2}{2m_p} \left(\nabla_A^2 + \nabla_B^2\right) \Psi(\vec{r}_A, \vec{r}_B) + E_{elec}\left(r_{AB}\right) \Psi(\vec{r}_A, \vec{r}_B)$$

go to center of mass and relative coordinates

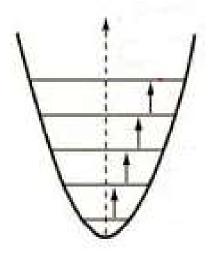
$$\vec{R} = \frac{\vec{R}_A + \vec{R}_B}{2} \qquad \vec{r} = \frac{\vec{R}_A - \vec{R}_B}{2}$$

$$H = H_R + H_r = -\frac{\hbar^2}{4m_p} \nabla_R^2 - \frac{\hbar^2}{2\mu} \nabla_r^2 + E_{elec}(r) \qquad \mu = \frac{m_p}{2}$$

Vibrational energy levels

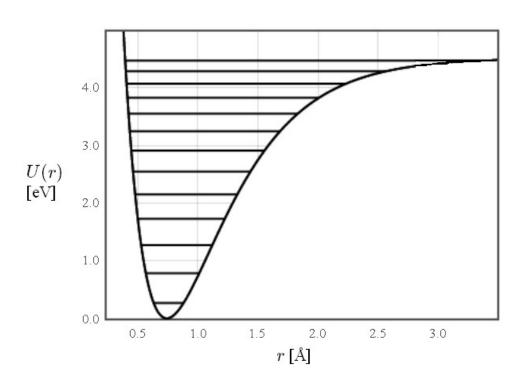
harmonic oscillator

$$E = \hbar \omega_0 \left(n + \frac{1}{2} \right)$$



$$\omega = \sqrt{\frac{k_{eff}}{\mu}} = \sqrt{\frac{2U_0 a^2}{\mu}}$$

Morse



$$U(r) \approx U_0 a^2 \left(r - r_0 \right)^2 + \cdots$$

Energy levels of the Morse potential

$$H = -\frac{\hbar^2}{2\mu} \nabla^2 + U_{Morse}(r)$$

Morse potential

$$U(r) = U_0 \left(e^{-2(r-r_0)/a} - 2e^{-2(r-r_0)/a} \right)$$

Look for a solution in terms of the harmonic oscillator wave functions

$$\psi_{LCHM}(r) = c_0 \phi_0(r) + c_1 \phi_1(r) + c_2 \phi_2(r) + \cdots$$
 Harmonic oscillator eigen functions

$$\langle \phi_0 | H_{Morse} | \psi_{LCHM} \rangle = E \langle \phi_0 | \psi_{LCHM} \rangle$$

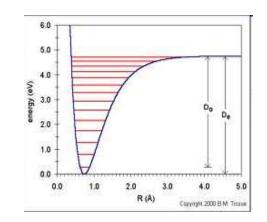
$$c_0 \left\langle \phi_0 \middle| H_{Morse} \middle| \phi_0 \right\rangle + c_1 \left\langle \phi_0 \middle| H_{Morse} \middle| \phi_1 \right\rangle + \dots = Ec_0 \left\langle \phi_0 \middle| \phi_0 \right\rangle + Ec_0 \left\langle \phi_0 \middle| \phi_1 \right\rangle + \dots$$

$$c_0 \left\langle \phi_j \middle| H_{Morse} \middle| \phi_0 \right\rangle + c_1 \left\langle \phi_j \middle| H_{Morse} \middle| \phi_1 \right\rangle + \dots = Ec_j$$

Energy levels of the Morse potential

This results in the following matrix equation

$$\begin{bmatrix} \left\langle H_{00} \right\rangle & \left\langle H_{01} \right\rangle & \left\langle H_{02} \right\rangle \\ \left\langle H_{10} \right\rangle & \left\langle H_{11} \right\rangle & \left\langle H_{12} \right\rangle \\ \left\langle H_{20} \right\rangle & \left\langle H_{21} \right\rangle & \left\langle H_{22} \right\rangle \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = E \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix}$$



$$\left\langle H_{ij} \right\rangle = \left\langle \phi_i \middle| H_{Morse} \middle| \phi_j \right\rangle$$

Normalized harmonic oscillator wave functions

The eigen values of this matrix are the energy levels of the Morse potential

Vibrations, translation, and rotation

3*n* degrees of freedom

3 translational degrees of freedom

Linear molecule: 2 rotational, 3n-5 vibrational degrees of freedom

Nonlinear molecule: 2 rotational, 3*n*-6 vibrational degrees of freedom

Vibrations, translation, and rotation

Mass-spring model for n atoms with 3n degrees of freedom

$$m_1 rac{d^2 u_1}{dt^2} = k_{12}(u_2 - u_1) + k_{13}(u_3 - u_1) + \dots + k_{1,3n}(u_{3n} - u_1)$$
 $m_1 rac{d^2 u_2}{dt^2} = k_{12}(u_1 - u_2) + k_{23}(u_3 - u_2) + \dots + k_{2,3n}(u_{3n} - u_2)$
 $m_1 rac{d^2 u_3}{dt^2} = k_{13}(u_1 - u_3) + k_{23}(u_2 - u_3) + \dots + k_{3,3n}(u_{3n} - u_3)$
 $m_2 rac{d^2 u_4}{dt^2} = k_{12}(u_1 - u_4) + k_{23}(u_2 - u_4) + \dots + k_{4,3n}(u_{3n} - u_4)$
 $m_2 rac{d^2 u_5}{dt^2} = k_{12}(u_1 - u_5) + k_{23}(u_2 - u_5) + \dots + k_{5,3n}(u_{3n} - u_5)$
 $m_2 rac{d^2 u_6}{dt^2} = k_{12}(u_1 - u_6) + k_{23}(u_2 - u_6) + \dots + k_{6,3n}(u_{3n} - u_6)$

:

$$m_n rac{d^2 u_{3n-2}}{dt^2} = k_{1,3n-2}(u_1 - u_{3n-2}) + k_{2,3n-2}(u_2 - u_{3n-2}) + \cdots + k_{3n-2,3n}(u_{3n} - u_{3n-2}) \ m_n rac{d^2 u_{3n-1}}{dt^2} = k_{1,3n-1}(u_1 - u_{3n-1}) + k_{2,3n-1}(u_2 - u_{3n-1}) + \cdots + k_{3n-1,3n}(u_{3n} - u_{3n-1}) \ m_n rac{d^2 u_{3n}}{dt^2} = k_{1,3n}(u_1 - u_{3n}) + k_{2,3n}(u_2 - u_{3n}) + \cdots + k_{3n-1,3n}(u_{3n-1} - u_{3n}) \ n_n rac{d^2 u_{3n}}{dt^2} = k_{1,3n}(u_1 - u_{3n}) + k_{2,3n}(u_2 - u_{3n}) + \cdots + k_{3n-1,3n}(u_{3n-1} - u_{3n}) \ n_n rac{d^2 u_{3n}}{dt^2} = k_{1,3n}(u_1 - u_{3n}) + k_{2,3n}(u_2 - u_{3n}) + \cdots + k_{3n-1,3n}(u_{3n-1} - u_{3n}) \ n_n rac{d^2 u_{3n}}{dt^2} = k_{1,3n}(u_1 - u_{3n}) + k_{2,3n}(u_2 - u_{3n}) + \cdots + k_{3n-1,3n}(u_{3n-1} - u_{3n}) \ n_n rac{d^2 u_{3n}}{dt^2} = k_{1,3n}(u_1 - u_{3n}) + k_{2,3n}(u_2 - u_{3n}) + \cdots + k_{3n-1,3n}(u_{3n-1} - u_{3n}) \ n_n rac{d^2 u_{3n}}{dt^2} = k_{1,3n}(u_1 - u_{3n}) + k_{2,3n}(u_2 - u_{3n}) + \cdots + k_{3n-1,3n}(u_{3n-1} - u_{3n}) \ n_n rac{d^2 u_{3n}}{dt^2} = k_{1,3n}(u_1 - u_{3n}) + k_{2,3n}(u_2 - u_{3n}) + \cdots + k_{3n-1,3n}(u_{3n-1} - u_{3n}) \ n_n rac{d^2 u_{3n}}{dt^2} = k_{1,3n}(u_1 - u_{3n}) + k_{2,3n}(u_2 - u_{3n}) + \cdots + k_{3n-1,3n}(u_{3n-1} - u_{3n}) \ n_n rac{d^2 u_{3n}}{dt^2} = k_{1,3n}(u_1 - u_{3n}) + k_{2,3n}(u_2 - u_{3n}) + \cdots + k_{3n-1,3n}(u_{3n-1} - u_{3n}) \ n_n \ n_n$$

Vibrations, translation, and rotation

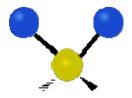
For a normal mode solution, all of the atoms move with the same frequency $u_p = A_p e^{i\omega t}$, where A_p is the amplitude of displacement $p=1,2,\dots,3n$.

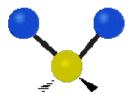
$$\begin{bmatrix} \sum_{p \neq 1} \frac{k_{1p}}{m_1} & -\frac{k_{12}}{m_1} & -\frac{k_{13}}{m_1} & \cdots & -\frac{k_{1,3n}}{m_1} \\ -\frac{k_{21}}{m_1} & \sum_{p \neq 2} \frac{k_{2p}}{m_1} & -\frac{k_{23}}{m_1} & \cdots & -\frac{k_{2,3n}}{m_1} \\ -\frac{k_{31}}{m_1} & -\frac{k_{32}}{m_1} & \sum_{p \neq 3} \frac{k_{3p}}{m_1} & \cdots & -\frac{k_{3,3n}}{m_1} \\ \vdots & & & & & \\ -\frac{k_{1,3n-2}}{m_n} & \cdots & \sum_{p \neq 3n-2} \frac{k_{p,3n-2}}{m_n} & -\frac{k_{3n-1,3n-2}}{m_n} & -\frac{k_{3n,3n-2}}{m_n} \\ -\frac{k_{1,3n-1}}{m_n} & \cdots & -\frac{k_{3n-2,3n-1}}{m_n} & \sum_{p \neq 3n-1} \frac{k_{p,3n-1}}{m_n} & -\frac{k_{3n,3n-1}}{m_n} \\ -\frac{k_{1,3n}}{m_n} & \cdots & -\frac{k_{3n-2,3n}}{m_n} & -\frac{k_{3n-1,3n}}{m_n} & \sum_{p \neq 3n} \frac{k_{p,3n}}{m_n} \end{bmatrix}$$

$$3n \text{ elements}$$

$$\begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ \vdots \\ A_{3n-1} \\ A_{3n-2} \\ A_{3n} \end{bmatrix}$$

The three fundamental vibrations of the water molecule





 $3657 \text{ cm}^{-1} (2.734 \mu\text{m})$

 v_1 , O-H symmetric stretching v_2 , H-O-H bending v_3 , O-H asymmetric stretching $1595 \text{ cm}^{-1} (6.269 \, \mu\text{m}) \quad 3756 \text{ cm}^{-1} (2.662 \, \mu\text{m})$

3n - 3 translational - 3 rotational = 3 vibrational normal modes

http://en.wikipedia.org/wiki/Electromagnetic_absorption_by_water

Molecular rotations

In the first approximation, consider the molecules as rigid and calculate the moment of inertia (Trägheitsmoment).

The energy levels for a rigid rotator are

$$E_{\ell} = \frac{\hbar^2}{2I} \ell \left(\ell + 1\right) \qquad \ell = 0, 1, 2, \dots$$

Moment of inertia (Trägheitsmoment)

$$I = \sum_{i} m_{i} r_{i}^{2}$$

Rotational and vibrational energy levels of diatomic molecules

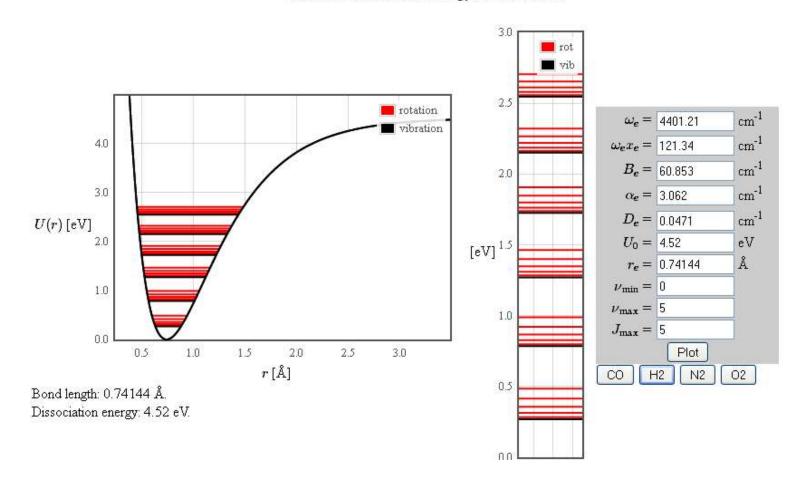
The rotational and vibrational energy levels of diatomic molecules can be approximated as,

$$E_{
m vib} = hc\omega_e(
u + 1/2) - hc\omega_e x_e(
u + 1/2)^2,$$

$$E_{
m rot} = hc(B_e - \alpha_e(
u + 1/2))J(J+1) + D_e(J(J+1))^2),$$

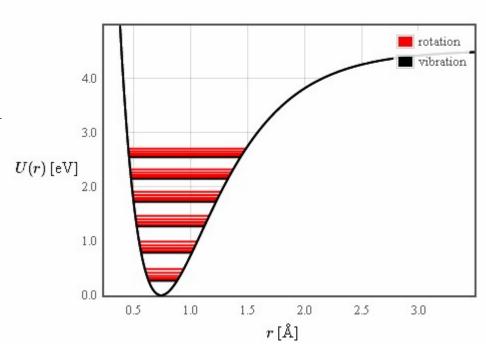
where ω_e , x_e , B_e , α_e , and D_e are specroscopic constants. The quantum numbers ν and J can take on integer values, ν , $J=0,1,2,\cdots$. Here h is Planck's constant and c is the speed of light in vacuum. The units of all of the spectroscopic constants are cm⁻¹ except for x_e which is unitless. The rotational and vibrational energy levels $E_{\nu J}=E_{\rm vib}+E_{\rm rot}$ are plotted in the bond potential on the left. An enlargement of the energy level spacing is shown on the right.

Vibration-rotation energy levels of H2



Excited electrical states

The bonding between atoms and the effective spring constants change when a molecule enters an excited electronic state. The vibrational and rotational modes have to be recalculated.



Molecular Spectroscopy Jet Propulsion Laboratory California Institute of Technology

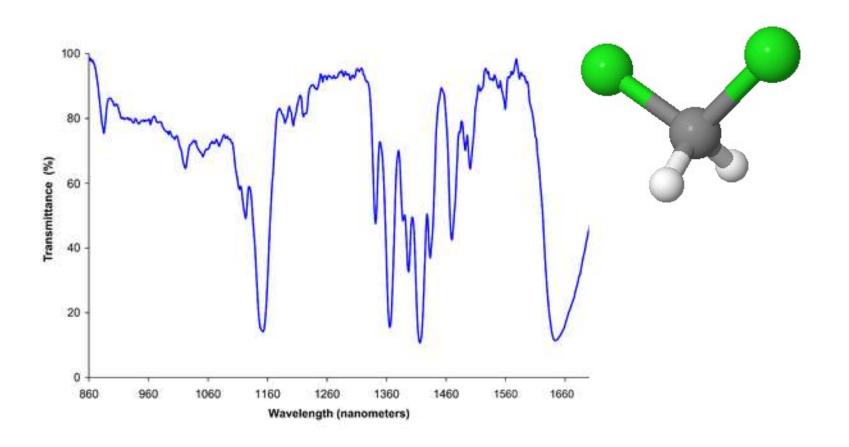
"Molecular spectroscopy is the study of absorption of light by molecules. In the gas phase at low pressures, molecules exhibit absorption in narrow lines which are very characteristic of the molecule as well as the temperature and pressure of its environment. In the microwave and long-wavelength infrared regions of the spectrum, these lines are due to quantized rotational motion of the molecule. At shorter wavelengths similar lines are due to quantized vibration and electronic motion as well as rotational motion. The precise frequencies of these lines can be fit to quantum mechanical models which can be used both to determine the structure of the molecule and to predict the frequencies and intensities of other lines. Because this absorption is so characteristic, it is very valuable for detecting molecules in the Earth's stratosphere, planetary atmospheres, and even the interstellar medium."

JPL HOME EARTH SOLAR SYSTEM STARS & GALAXIES TECHNOLOGY

Catalog Directory

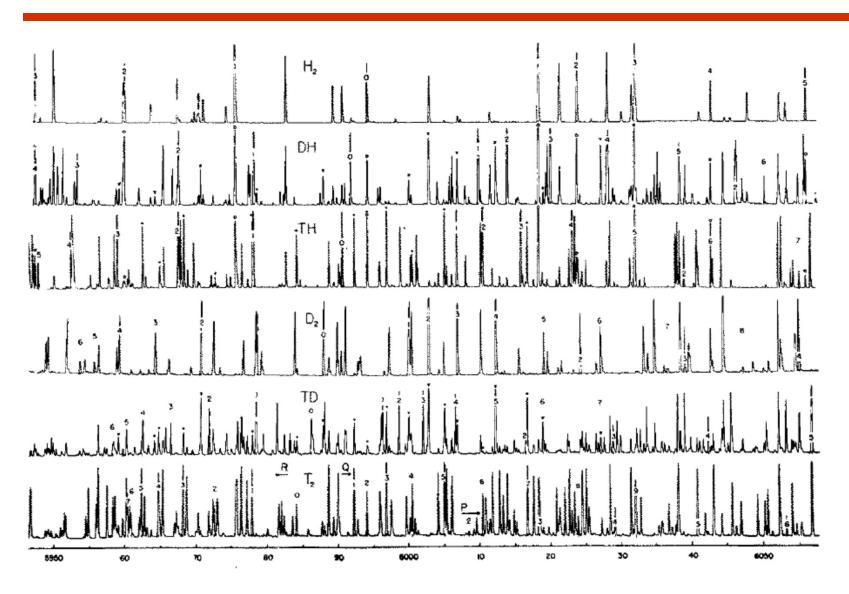
ID	Name	# lines	Ver.	. Catalog	Documentation		
1001	H-atom	1	1	c001001.cat	pdf	or Te	x format
2001	D-atom	1	1	c002001.cat	pdf	or Te	ex format
3001	HD	1	2	c003001.cat	pdf	or Te	ex format
4001	H2D+	32	2*	c004001.cat	pdf	or Te	x format
7001	Li-6-H	51	2*	c007001.cat	pdf	or Te	ex format
8001	LiH	53	2*	c008001.cat	pdf	or Te	ex format
8002	Li-6-D	80	1	c008002.cat	pdf	or Te	ex format
9001	LiD	90	1	c009001.cat	pdf	or Te	x format
12001	C-atom	2	2	c012001.cat	pdf	or Te	x format
13001	C-13-atom	7	2	c013001.cat	pdf	or Te	ex format
13002	CH	508	2*	c013002.cat	pdf	or Te	ex format
13003	CH+	9	2	c013003.cat	pdf	or Te	x format
14001	N-atom	2	1	c014001.cat	pdf	or Te	ex format
14002	N-atom-D-st	6	3	c014002.cat	pdf	or Te	ex format
14003	13CH	648	1*	c014003.cat	pdf	or Te	ex format
14004	CD	188	1*	c014004.cat	pdf	or Te	x format
15001	NH	1416	1*	c015001.cat	pdf	or Te	x format
16001	0-atom	2	2	c016001.cat	pdf	or Te	ex format
17001	OH	3153	5*	c017001.cat	pdf	or Te	ex format
17002	NH3	1716	5*	c017002.cat	pdf	or Te	x format
17003	CH3D	143	3*	c017003.cat	pdf	or Te	ex format
17004	NH3-v2	4198	5*	c017004.cat	pdf	or Te	ex format
18001	OD	9351	2	c018001.cat	pdf	or Te	ex format
18002	N-15-H3	235	2	c018002.cat	pdf	or Te	x format
18003	H20	1376	6*	c018003.cat	pdf	or Te	x format
18004	NH2D	5036	1	c018004.cat	pdf	or Te	ex format
18005	H20 v2,2v2,v	8608	4*	c018005.cat	pdf	or Te	ex format
18006	13CH3D	143	1*	c018006.cat	pdf	or Te	x format
18007	170H	46769	1*	c018007.cat	pdf	or Te	x format
19001	H0-18	3159	3	c019001.cat	pdf	or Te	ex format
19002	HD0	1401	3	c019002.cat	pdf	or Te	ex format
19003	H20-17	404	1	c019003.cat	pdf	or Te	x format
19004	H30+	304	3*	c019004.cat	pdf	or Te	x format
19005	H30+ v1,v3,v	1973	2*	c019005.cat	pdf	or Te	ex format
19006	170D	113226	1*	c019006.cat	pdf	or Te	ex format
20001	D20	1137	2	c020001.cat	pdf	or Te	x format
20002	HF	8	1	c020002.cat	pdf	or Te	x format
20003	H20-18	726	1	c020003.cat	pdf	or Te	ex format
20004	180D	3632	1*	c020004.cat	pdf	or Te	x format
21001	HD0-18	952	1	c021001.cat	pdf	or Te	x format
21002	DF	20	1	c021002.cat	pdf	or Te	x format
25001	CCH	114	1	c025001.cat	pdf	or Te	x format

IR absorption spectrum



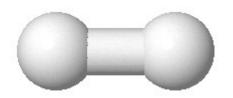
Near IR absorption spectrum of dichloromethane.

Emission spectra



Dieke, Journal of Molecular Spectroscopy 2, p. 494 (1958)

Student project: Explain how to calculate the Hamiltonian matrix elements or overlap matrix elements



Molecular orbitals of H₂

The simplest molecule is molecular hydrogen, H2. The molecular orbital Hamiltonian in this case is,

$$H_{
m mo}^{H_2} = -\,rac{\hbar^2}{2m_e}\,
abla^2 - rac{e^2}{4\pi\epsilon_0|ec{r}-ec{r}_A|} - rac{e^2}{4\pi\epsilon_0|ec{r}-ec{r}_B|}\,,$$

where \vec{r}_A and \vec{r}_B are the positions of the two protons. If only the two 1s orbitals are used in the linear combination of atomic orbitals, $\psi_{\text{mo}} = c_1 \phi_{1\text{s}}(\vec{r} - \vec{r}_A) + c_2 \phi_{1\text{s}}(\vec{r} - \vec{r}_B)$, the associated Roothaan equations are,

$$\begin{bmatrix} H_{11} & H_{12} \\ H_{12} & H_{11} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = E \begin{bmatrix} S_{11} & S_{12} \\ S_{12} & S_{11} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix},$$

where

$$egin{aligned} H_{11} &= \langle \phi_{1\mathrm{S}}(ec{r}-ec{r}_A) | H_{\mathrm{mo}}^{H_2} | \phi_{1\mathrm{S}}(ec{r}-ec{r}_A)
angle, \ H_{12} &= \langle \phi_{1\mathrm{S}}(ec{r}-ec{r}_A) | H_{\mathrm{mo}}^{H_2} | \phi_{1\mathrm{S}}(ec{r}-ec{r}_B)
angle, \ S_{11} &= \langle \phi_{1\mathrm{S}}(ec{r}-ec{r}_A) | \phi_{1\mathrm{S}}(ec{r}-ec{r}_A)
angle = 1, \ S_{12} &= \langle \phi_{1\mathrm{S}}(ec{r}-ec{r}_A) | \phi_{1\mathrm{S}}(ec{r}-ec{r}_B)
angle. \end{aligned}$$

Chemical bonds

Ionic bonds

Covalent bonds

Metallic bonds

Bond potentials

Polar bonds

 σ - bonds

 π - bonds

double bonds

triple bonds

Ionic bond

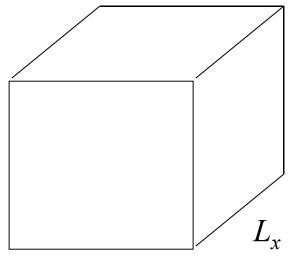
Coulomb force:

$$F = \frac{e^2}{4\pi\varepsilon_0 r^2}$$

Energy needed to separate charges *e* and -*e*

$$E = \int \vec{F} \cdot d\vec{r} = \int_{0.2 \text{ nm}}^{\infty} \frac{-e^2}{4\pi\varepsilon_0 r^2} dr = 7 \text{ eV}$$

Ionic bonds are a few eV



Covalent bond: Square well potential

 L_z

$$V = \begin{cases} 0 & \text{inside the cube} \\ \infty & \text{outside the cube} \end{cases}$$

$$-\frac{\hbar^2}{2m}\nabla^2\Psi = E\Psi$$

$$\Psi = \frac{2\sqrt{2}}{\sqrt{L_x L_y L_z}} \sin \frac{n_x \pi x}{L_x} \sin \frac{n_y \pi y}{L_y} \sin \frac{n_z \pi z}{L_z} \qquad n_x, n_x, n_x = 1, 2, 3 \dots$$

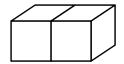
$$E_{n_x n_y n_z} = \frac{\hbar^2 \pi^2}{2m} \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2} + \frac{n_z^2}{L_z^2} \right)$$

Covalent bond

$$E_{n_x n_y n_z} = \frac{\hbar^2 \pi^2}{2m} \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2} + \frac{n_z^2}{L_z^2} \right)$$

Energy of a particle confined to a cube $L \times L \times L$

$$E = \frac{3h^2}{8mL^2} = \frac{12h^2}{32mL^2}$$



Energy of a particle confined to a cube $L \times L \times 2L$

$$E = \frac{9h^2}{32mL^2}$$

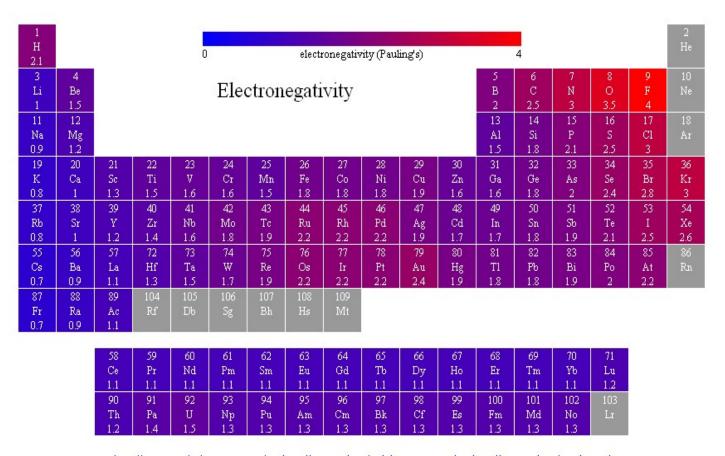
Decrease in energy:

$$E = 2 \times \frac{3h^2}{32mL^2} = \frac{3h^2}{16mL^2}$$
Two electrons

For
$$L = 0.2 \text{ nm}$$
 $\Delta E = 14 \text{ eV}$

Polar bonds

Partly covalent and partly ionic. The more electronegative element will have more negative charge.

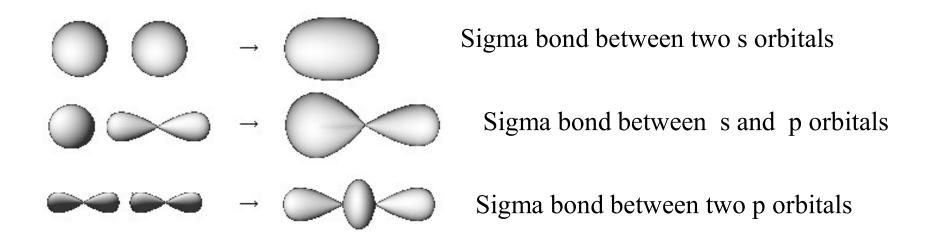


http://www.webelements.com/

http://www.chemicalelements.com/

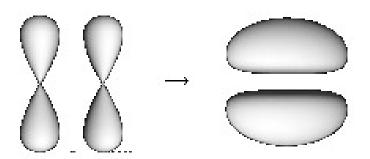
http://www.chemicool.com/

Sigma bonds



The angular momentum of a sigma orbital around the interatomic axis is zero. A molecule can twist around a sigma bond.

Pi bonds



Pi bond between two p orbitals

A molecule cannot twist around a Pi bond.

Single bond / double bond / triple bonds

Single bond: Two electrons are shared, sigma bond

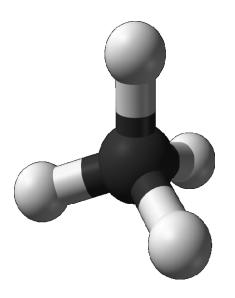
Double bond: Four electrons are shared, sigma bond + pi bond

Triple bond : Six electrons are shared, sigma bond + 2 pi bonds

Hybrid orbitals

isolated carbon atom

In molecules, carbon forms sp, sp², and sp³ orbitals.



$$\psi_{2s} = \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_0}\right)^{\frac{3}{2}} \left(2 - \frac{r}{a_0}\right) e^{-\frac{r}{2a_0}}$$

$$\psi_{2px} = \frac{x}{\sqrt{32\pi a_0^5}} e^{-r/2a_0}$$

$$\psi_{2py} = \frac{y}{\sqrt{32\pi a_0^5}} e^{-r/2a_0}$$

$$\psi_{2pz} = \frac{z}{\sqrt{32\pi a_0^5}} e^{-r/2a_0}$$

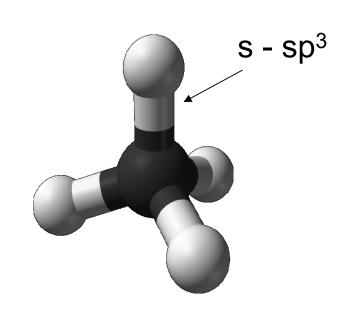
sp³ hybrid orbitals 109°

$$\psi_1 = \frac{1}{2} \left(\phi_{2s} + \phi_{2p_x} + \phi_{2p_y} + \phi_{2p_z} \right)$$

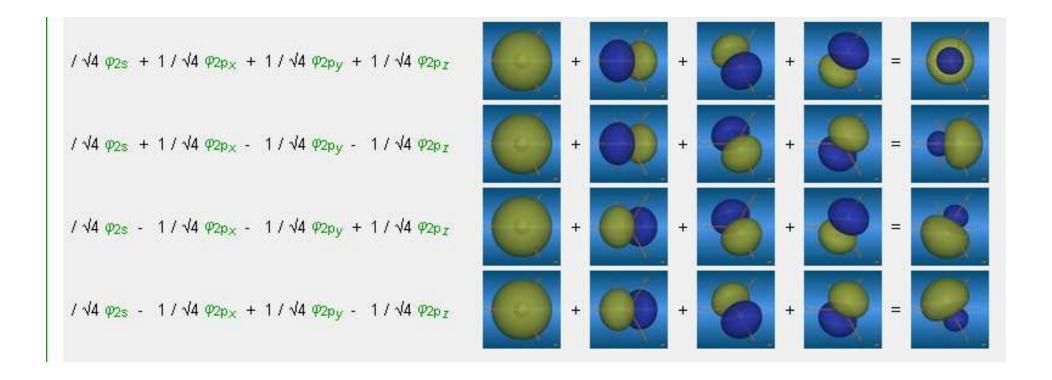
$$\psi_2 = \frac{1}{2} \left(\phi_{2s} + \phi_{2p_x} - \phi_{2p_y} - \phi_{2p_z} \right)$$

$$\psi_3 = \frac{1}{2} \left(\phi_{2s} - \phi_{2p_x} + \phi_{2p_y} - \phi_{2p_z} \right)$$

$$\psi_4 = \frac{1}{2} \left(\phi_{2s} - \phi_{2p_x} - \phi_{2p_y} + \phi_{2p_z} \right)$$



In this molecular orbital, the coefficients of these 4 atomic orbitals are about $c_{2s} = 1$, $c_{2px} = -1$, $c_{2py} = -1$, $c_{2pz} = 1$.



sp² hybrid orbitals 120°

The four orbitals are sp²,sp², sp², p

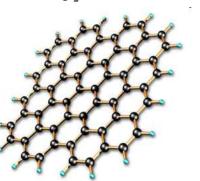
$$\psi_{1} = \frac{1}{\sqrt{3}} \left(\psi_{s} + \sqrt{2} \psi_{p_{x}} \right)$$

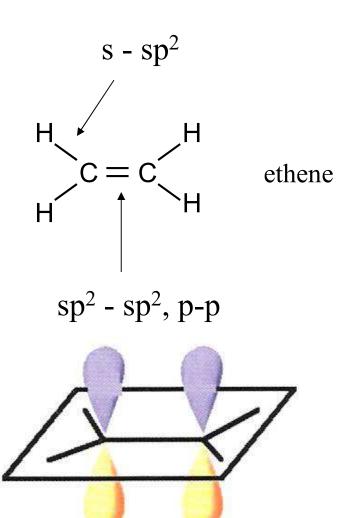
$$\psi_{2} = \frac{1}{\sqrt{3}} \psi_{s} - \frac{1}{\sqrt{6}} \psi_{p_{x}} + \frac{1}{\sqrt{2}} \psi_{p_{y}}$$

$$\psi_{3} = \frac{1}{\sqrt{3}} \psi_{s} - \frac{1}{\sqrt{6}} \psi_{p_{x}} - \frac{1}{\sqrt{2}} \psi_{p_{y}}$$

$$\psi_{4} = \psi_{p_{z}}$$

Graphene





sp hybrid orbitals

The four orbitals are sp, sp, p, p

$$\psi_1 = \frac{1}{\sqrt{2}} \left(\psi_s + \psi_{p_z} \right) \qquad \psi_2 = \frac{1}{\sqrt{2}} \left(\psi_s - \psi_{p_z} \right)$$

$$\psi_3 = \psi_{p_y} \qquad \qquad \psi_4 = \psi_{p_z}$$

