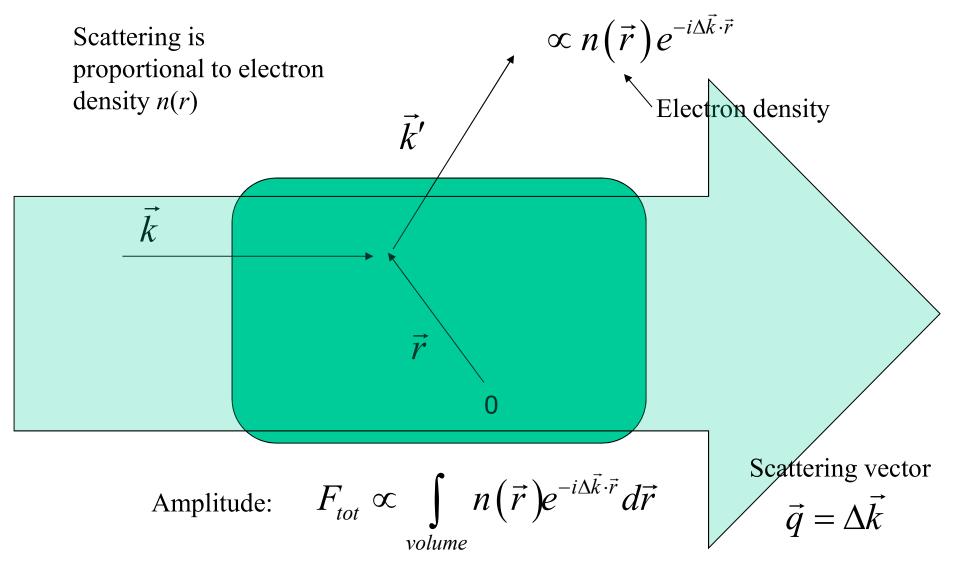
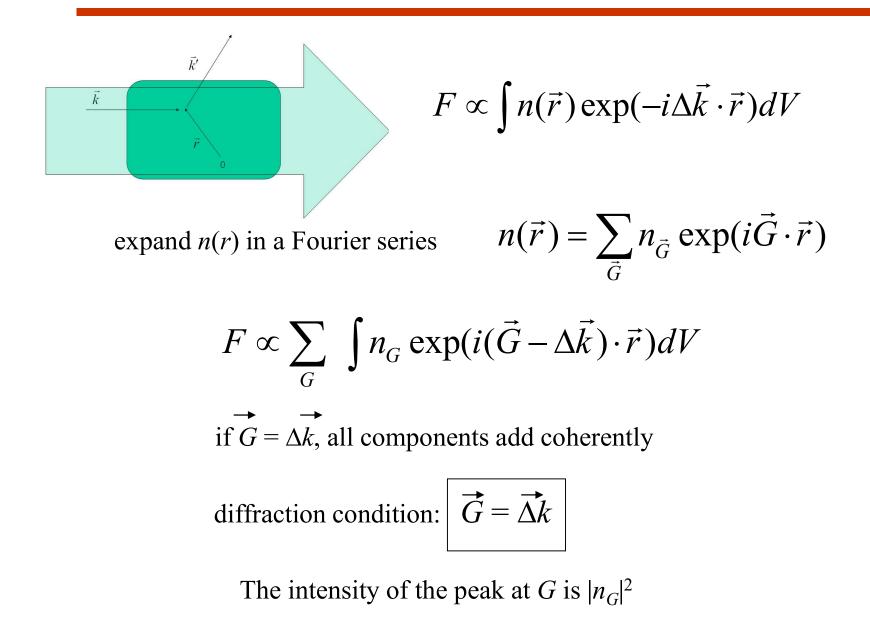
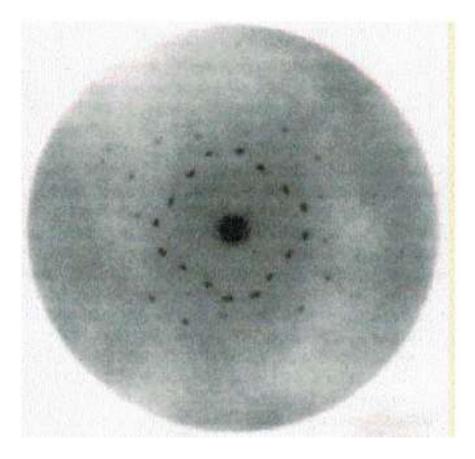

Interference


Using complex numbers to describe oscillations

Interference



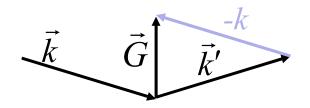
Interference


The scattering amplitude is proportional to the Fourier transform of the electron density.

Scattering amplitude

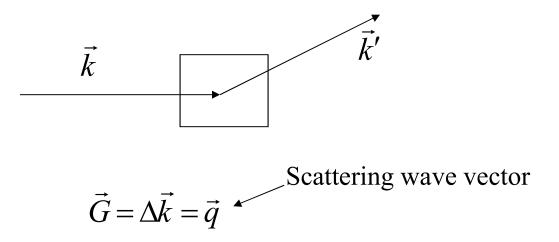
nobel prize 1914

first diffraction experiment of Max von Laue 1912 ZnS single crystal, exposure time 30' the 5th diffraction pattern



M. von Laue (1879-1960)

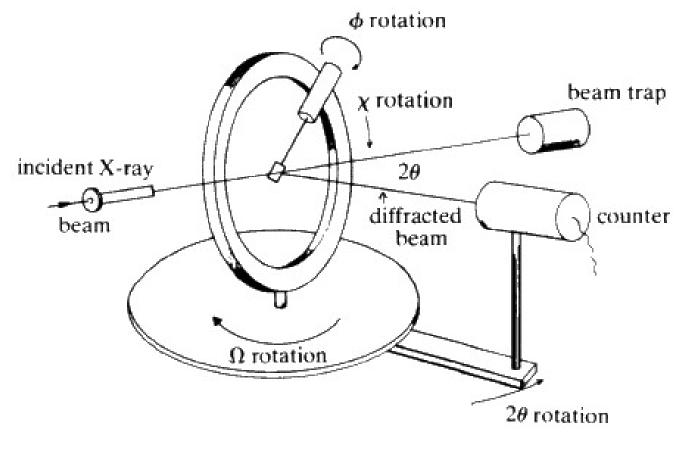
$$\vec{G} = \Delta \vec{k}$$


Diffraction condition (Laue condition)

$$\vec{k'} - \vec{k} = \Delta \vec{k} = \vec{G}$$

 $|\vec{k}| = |\vec{k'}|$ for elastic scattering

Single crystal diffraction



Every time a diffraction peak is observed, record G. When many G vectors are known, determine the reciprocal lattice.

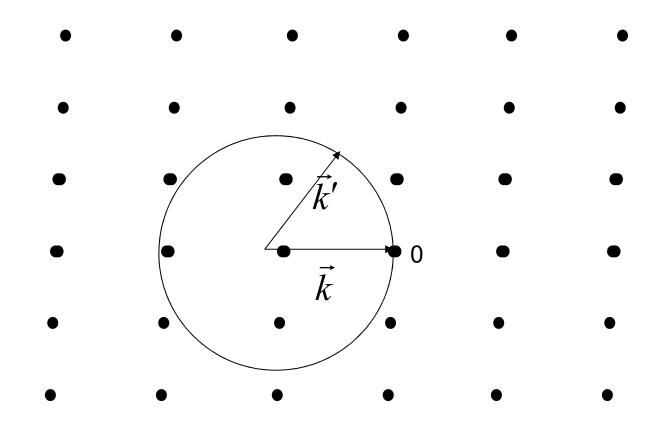
The sample and the detector must be turned to find all of the diffraction peaks.

Gx	Gy	Gz	$ n_G ^2$
2.4E10	2.4E10	0	10341
2.4E10	0	2.4E10	9989

$$n(\vec{r}) = \sum_{\vec{G}} n_{\vec{G}} \exp(i\vec{G}\cdot\vec{r})$$

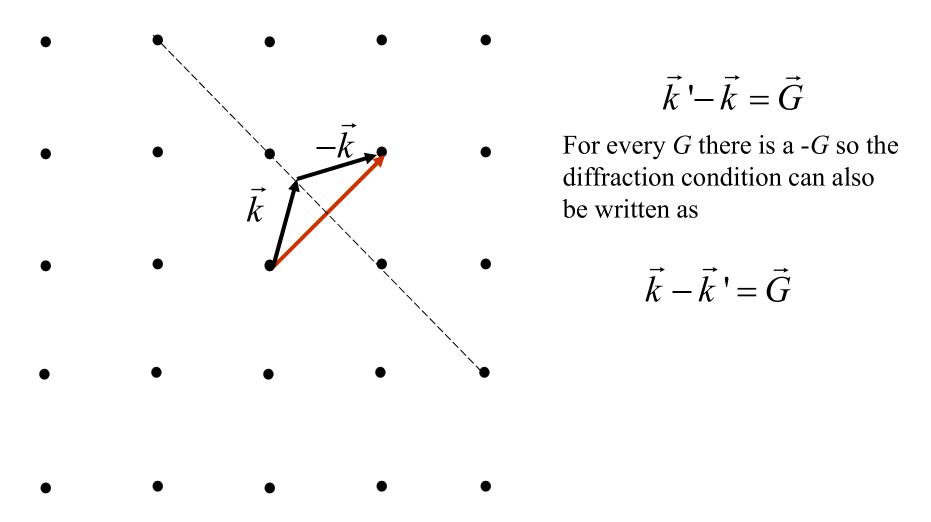
 θ sets the length of the scattering vector

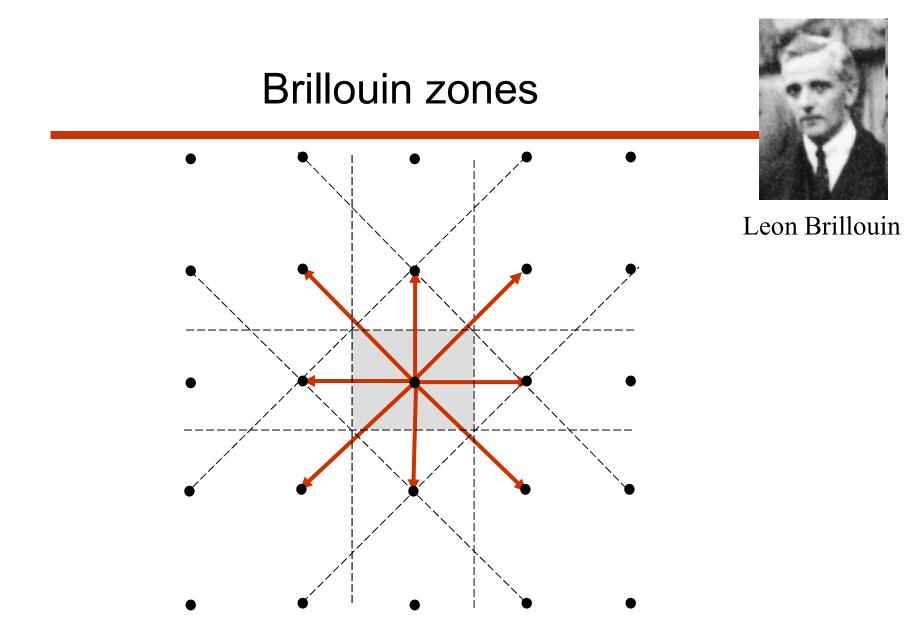
Determining real space primitive lattice vectors


$$\vec{a}_1 = 2\pi \frac{\vec{b}_2 \times \vec{b}_3}{\vec{b}_1 \cdot (\vec{b}_2 \times \vec{b}_3)}$$
$$\vec{a}_2 = 2\pi \frac{\vec{b}_3 \times \vec{b}_1}{\vec{b}_1 \cdot (\vec{b}_2 \times \vec{b}_3)}$$
$$\vec{a}_3 = 2\pi \frac{\vec{b}_1 \times \vec{b}_2}{\vec{b}_1 \cdot (\vec{b}_2 \times \vec{b}_3)}$$

 $\vec{b_1}, \vec{b_2}, \vec{b_3}$ determined from diffraction experiment

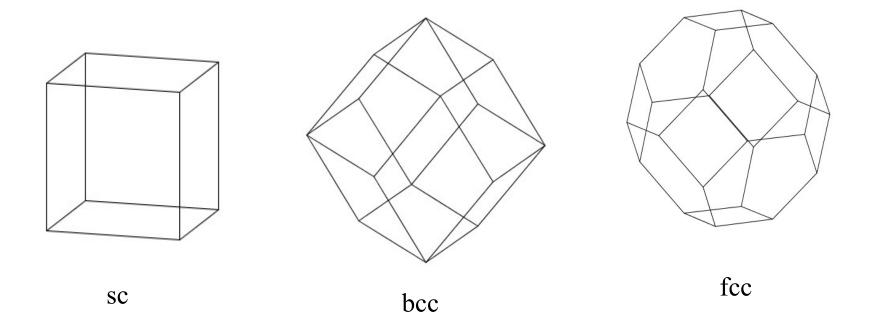
Volume of the primitive unit cell $\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)$


G vectors specify the Bravais lattice.



Draw a vector representing the incoming radiation so that it ends at the origin. As the crystal is rotated around the origin, the condition for diffraction will be satisfied every time a reciprocal lattice point is on the sphere.

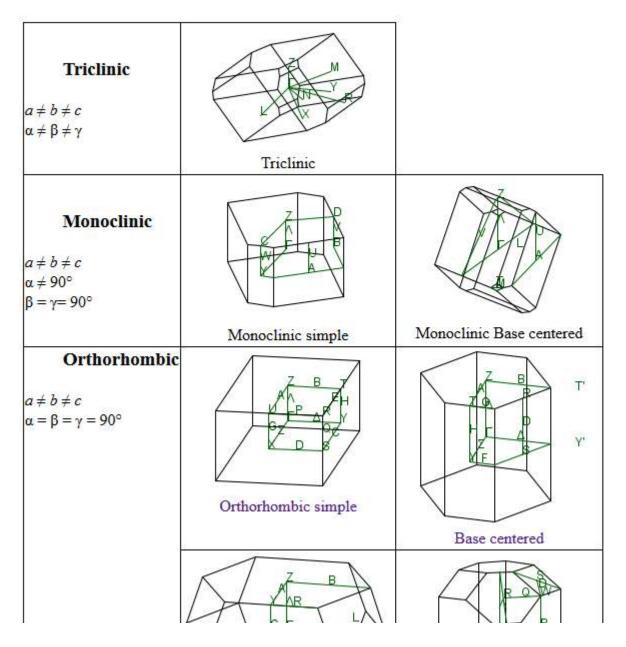
Diffraction condition



a wave will be diffracted if the wave vector ends on one of the planes

1st Brillouin zone consists of the *k*-states around the origin that can be reached without crossing a plane.

1st Brillouin zones


1st Brillouin is the Wigner-Seitz cell in reciprocal space.

v

~

Brillouin zones

Electron density of an atom

Most of the electrons are concentrated around the nucleus. The integral over the electron density is proportional to the number of electrons.

$$n_j(\vec{r}) \propto \exp\left(-\frac{\left(\vec{r}-\vec{r}_j\right)^2}{r_0^2}\right)$$

Approximately a Gaussian centered at r_i

Electron density

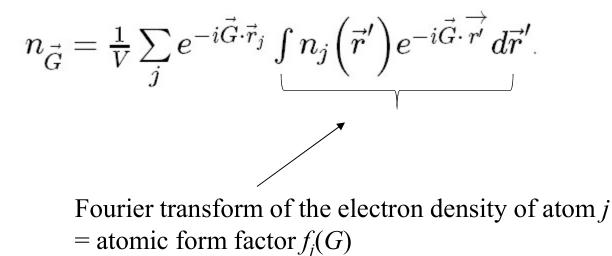
Write the electron density as a Fourier series

$$n(\vec{r}) = \sum_{\vec{G}} n_{\vec{G}} e^{i\vec{G}\cdot\vec{r}} = \sum_{\vec{T}} \sum_{j} n_{j} \left(\vec{r} - \vec{r}_{j} + \vec{T}\right),$$

Translation of atom *i* of the basis

position of atom j of the basis

on vector

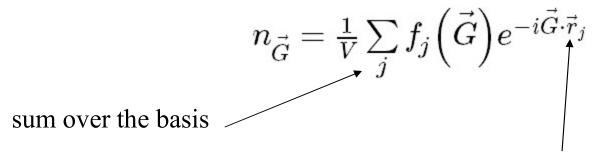

Multiply by $e^{-i\vec{G}'\cdot\vec{r}}$ and integrate over a unit cell.

$$\sum_{\vec{G}} \int_{\mathbf{u.c.}} n_{\vec{G}} e^{i\vec{G}\cdot\vec{r}} e^{-i\vec{G}'\cdot\vec{r}} d\vec{r} = \sum_{j} \int_{\mathbf{u.c.}} n_j (\vec{r}-\vec{r}_j) e^{-i\vec{G}'\cdot\vec{r}} d\vec{r}.$$

Electron density

$$n_{\vec{G}}V = \sum_{j} \int n_{j} \left(\vec{r} - \vec{r}_{j}\right) e^{-i\vec{G}\cdot\vec{r}} d\vec{r}$$

Make a substitution $\vec{r}' = \vec{r} - \vec{r}_j$.



Atomic form factor

$$f_j\left(\vec{G}\right) = \int n_j\left(\vec{r}\right) e^{-i\vec{G}\cdot\vec{r}} d\vec{r},$$

The atomic form factors can be looked up in a table.

The structure factors are given in terms of the atomic form factors.

position of atom *j* of the basis

| home | resources | purchase | contact us | help |

http://it.iucr.org/Cb/ch4o3v0001/sec4o3o2/

RELATED SITES: IUCr | IUCr Journals

Springer

previous | next |

search

INTERNATIONAL TABLES Mathematical, physical and chemical tables

| A | A1 | B | 🗲 | D | E | F | G |

Home > Volume C > Contents > Chapter 4.3 > Section 4.3.2

International Tables for	pdf chapter contents chapter index related articles					
Crystallography	International Tables for Crystallography (2006). Vol. C, ch. 4.3, p. 262					
Volume C						
Mathematical, physical and chemical tables Edited by E. Prince	Section 4.3.2. Parameterizations of electron atomic scattering factors					
eISBN 978-1-4020-5408-2	J. M. Cowley, b^{\pm} L. M. Peng, ⁱ G. Ren, ^j S. L. Dudarev ^c and M. J. Whelan ^c					

© International Union of Crystallography 2006

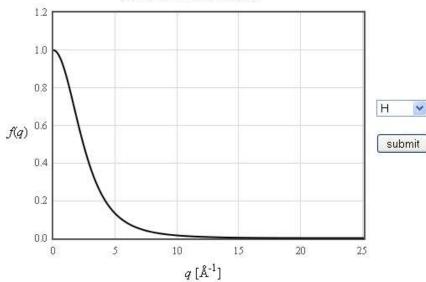
Table 4.3.2.2 | pdf |

Elastic atomic scattering factors of electrons for neutral atoms and s up to 2.0 ${\rm \AA}^{-1}$

 $f(s) = \sum_{i} a_i \exp\left(-b_i s^2\right)$

Element	Z	a_1	a_2	a3	a4	<i>a</i> 5	b_1	b_2	b_3	b_4	b_5
Н	1	0.0349	0.1201	0.1970	0.0573	0.1195	0.5347	3.5867	12.3471	18.9525	38.6269
He	2	0.0317	0.0838	0.1526	0.1334	0.0164	0.2507	1.4751	4.4938	12.6646	31.1653
Li	3	0.0750	0.2249	0.5548	1.4954	0.9354	0.3864	2.9383	15.3829	53.5545	138.7337
Be	4	0.0780	0.2210	0.6740	1.3867	0.6925	0.3131	2.2381	10.1517	30.9061	78.3273
В	5	0.0909	0.2551	0.7738	1.2136	0.4606	0.2995	2.1155	8.3816	24.1292	63.1314
С	6	0.0893	0.2563	0.7570	1.0487	0.3575	0.2465	1.7100	6.4094	18.6113	50.2523
И	7	0.1022	0.3219	0.7982	0.8197	0.1715	0.2451	1.7481	6.1925	17.3894	48.1431
0	8	0.0974	0.2921	0.6910	0.6990	0.2039	0.2067	1.3815	4.6943	12.7105	32.4726
F	9	0.1083	0.3175	0.6487	0.5846	0.1421	0.2057	1.3439	4.2788	11.3932	28.7881
Ne	10	0.1269	0.3535	0.5582	0.4674	0.1460	0.2200	1.3779	4.0203	9.4934	23.1278
Na	11	0.2142	0.6853	0.7692	1.6589	1.4482	0.3334	2.3446	10.0830	48.3037	138.2700
Mg	12	0.2314	0.6866	0.9677	2.1882	1.1339	0.3278	2.2720	10.9241	39.2898	101.9748
A1	13	0.2390	0.6573	1.2011	2.5586	1.2312	0.3138	2.1063	10.4163	34.4552	98.5344

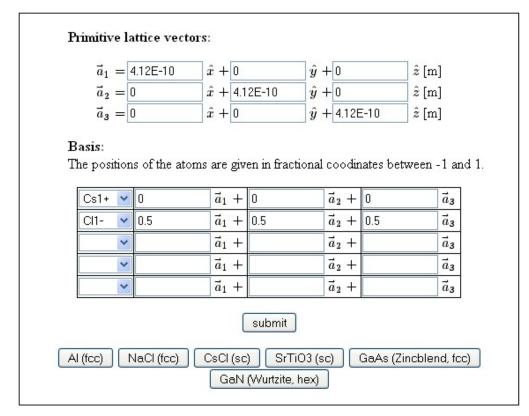
河 Most Visited 🥮 Getting Started 🔝 Latest Headlines 🗌 English to German


513.001 Molecular and Solid State Physics

Atomic form factors

In the range of scattering vectors between $0 \le q \le 25 \text{ Å}^{-1}$, the atomic form factor is well approximated by the expression, [1]

$$f(q) = \sum_{i=1}^{4} a_i \exp\left(-b_i \left(\frac{q}{4\pi}\right)^2\right) + c_i$$


where the values of a_i , b_i , and c are tabulated below. The different atomic form factors for the elements can be plotted using the form below.

b1 b2 b4 Element b3 a a_2 a_3 a4 с H 0.489918 20.6593 0.262003 7.74039 0.196767 49.5519 2.20159 0.049879 0.001305 53.1368 15.187 0.415815 186.576 3.56709 H1-0.897661 0.565616 0.116973 0.002389 He 0.8734 9.1037 0.6309 3.3568 22.9276 0.178 0.9821 0.3112 0.0064 ·τ. 1 1000 A 3640 1.0004 A 6196 00.0000 A 4000 120.021 A A000

Home Outline Introduction Molecules Crystal Structure **Crystal Diffraction** Crystal Binding Photons Phonons Electrons Energy bands Crystal Physics Semiconductors Magnetism Exam questions Appendices Lectures **TUG students** Student projects Skriptum Books Making presentations < hide <

Atomic form factor for H

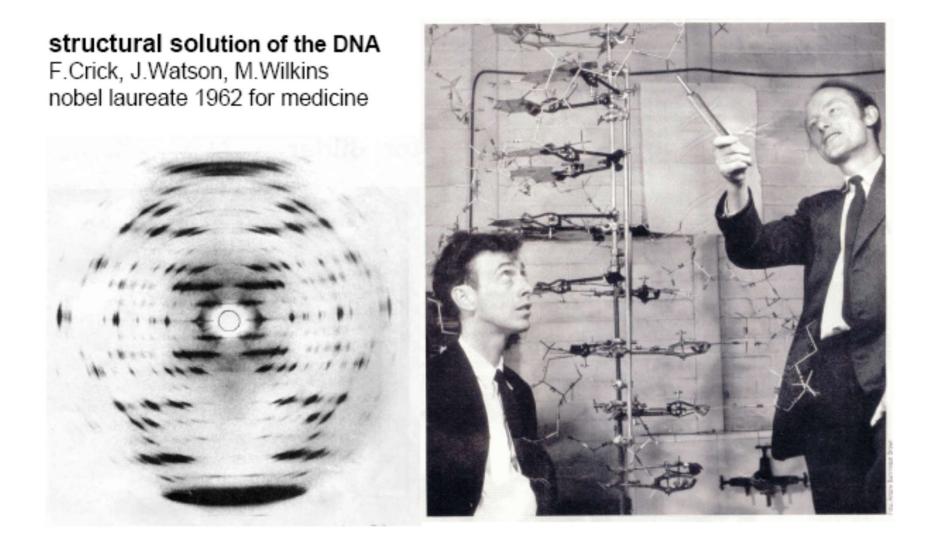
Primitive reciprocal lattice vectors

$$\begin{split} \vec{b}_1 &= 2\pi \, \frac{\vec{a}_2 \times \vec{a}_3}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} \, = & 1.525 \text{e}{\pm}10 \, \hat{k}_x \pm 0.000 \, \hat{k}_y \pm 0.000 \, \hat{k}_z \, [\text{m}^{-1}] \\ \vec{b}_2 &= 2\pi \, \frac{\vec{a}_3 \times \vec{a}_1}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} \, = & 0.000 \, \hat{k}_x \pm 1.525 \text{e}{\pm}10 \, \hat{k}_y \pm 0.000 \, \hat{k}_z \, [\text{m}^{-1}] \\ \vec{b}_3 &= 2\pi \, \frac{\vec{a}_1 \times \vec{a}_2}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} \, = & 0.000 \, \hat{k}_x \pm 0.000 \, \hat{k}_y \pm 1.525 \text{e}{\pm}10 \, \hat{k}_z \, [\text{m}^{-1}] \end{split}$$

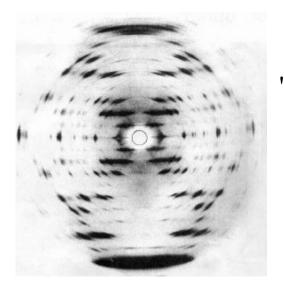
Structure factors

The value of $|n_{\vec{G}}|$ for the 000 diffraction peak is the total number of electrons in the primitive unit cell. The intensities of the peaks in an x-ray diffraction experiment

hkl	$ ec{G} $ Å ⁻¹	$n_{\vec{G}}$	$ n_{\tilde{G}} ^2$	$\operatorname{Re}\{n_{\tilde{G}}\}$	$\operatorname{Im}\{n_{\tilde{G}}\}$
000	0.000	72.00	5184	72.00	0.000
-100	1.525	34.43	1185	34.43	5.333e-8
0-10	1.525	34.43	1185	34.43	5.333e-8
00-1	1.525	34.43	1185	34.43	5.333e-8
001	1.525	34.43	1185	34.43	-5.333e-8
	1 000		1100		


Structure factor

$$n_{ec{G}} = rac{1}{V} \sum_j f_j(G) e^{-iec{G}\cdotec{r}_j}$$


A structure factor is the Fourier transform of the electron density of the basis of a crystal evaluated at a reciprocal lattice vector. Since the electron density of the basis can be approximated as a sum over the electron densities of the atoms in the basis, the Fourier transform of the electron density of the basis is a sum of the Fourier transforms of the electron densities of the atoms in the basis.

An x-ray experiment measures the scattered intensity $|F_G|^2$. The phase information is lost. This is proportional to $|n_G|^2$.

crystal structure solution

crystal structure solution

"Guess" the crystal structure

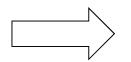


Table 4.3.2.2 | pdf |

Elastic atomic scattering factors of electrons for neutral atoms and s up to 2.0 ${\rm \AA}^{-1}$

Element	Z	a	a2	a3	<i>a</i> ₄	as	b_1	b_2	b_3
н	1	0.0349	0.1201	0.1970	0.0573	0.1195	0.5347	3.5867	12.3471
He	2	0.0317	0.0838	0.1526	0.1334	0.0164	0.2507	1.4751	4.4938
Li	3	0.0750	0.2249	0.5548	1.4954	0.9354	0.3864	2.9383	15.3829
Be	4	0.0780	0.2210	0.6740	1.3867	0.6925	0.3131	2.2381	10.1517
В	5	0.0909	0.2551	0.7738	1.2136	0.4606	0.2995	2.1155	8.3816
с	6	0.0893	0.2563	0.7570	1.0487	0.3575	0.2465	1.7100	6.4094
N	7	0.1022	0.3219	0.7982	0.8197	0.1715	0.2451	1.7481	6.1925
0	8	0.0974	0.2921	0.6910	0.6990	0.2039	0.2067	1.3815	4.6943
F	9	0.1083	0.3175	0.6487	0.5846	0.1421	0.2057	1.3439	4.2788
Ne	10	0.1269	0.3535	0.5582	0.4674	0.1460	0.2200	1.3779	4.0203
Na	11	0.2142	0.6853	0.7692	1.6589	1.4482	0.3334	2.3446	10.083
Mg	12	0.2314	0.6866	0.9677	2.1882	1.1339	0.3278	2.2720	10.924
Al	13	0.2390	0.6573	1.2011	2.5586	1.2312	0.3138	2.1063	10.416
Si	14	0.2519	0.6372	1.3795	2.5082	1.0500	0.3075	2.0174	9.6746
Р	15	0.2548	0.6106	1.4541	2.3204	0.8477	0.2908	1.8740	8.5176
S	16	0.2497	0.5628	1.3899	2.1865	0.7715	0.2681	1.6711	7.0267
C1	17	0.2443	0.5397	1.3919	2.0197	0.6621	0.2468	1.5242	6.1537
Ar	18	0.2385	0.5017	1.3428	1.8899	0.6079	0.2289	1.3694	5.2561

Compare $|n_G|^2$ to the measurements

From the atomic form factors, calculate the 7 structure factors n_G .

$$n(\vec{r}) = \sum_{\vec{G}} n_{\vec{G}} \exp(i\vec{G}\cdot\vec{r})$$

x-ray diffraction

The shape and the dimensions of the unit cell can be deduced from the positions of the Bragg reflections; the content of the unit cell, on the other hand, must be determined from the intensities of the reflections.

Solid State Physics, Ibach and Lüth

Diffraction condition:
$$\Delta \vec{k} = \vec{G}$$

The intensity of the peaks is proportional to the squared Fourier coefficients of the electron density.

$$n(\vec{r}) = \sum_{\vec{G}} n_{\vec{G}} \exp(i\vec{G}\cdot\vec{r})$$