Photonic crystal calculations

Bertram Dumböck, 0731337

June 14, 2018

Contents

1 Photonic density of states claculation (plane wave method) 1
2 simple cubic 2
3 inverse face centered cubic 3
4 diamond structure 4
5 inverse diamond structure 5
6 hexagonal crystal structure 6

1 Photonic density of states claculation (plane wave method)

- Definition of the conventional unit cell
- bravais lattice
- length of sides: a, b, c
- angles: α, β, γ
- ϵ_{C} of unit cell
- position, radius and ϵ_{S} of spheres
- Construction of simple unit cell (3D matrix C with the right ϵ-values)
- Construction of the reciprocal unit cell (first brillouin zone)
- Calculation of the fourier coefficionts $f=f f t 3(C)$ and selection of a certain number of fourier coefficients $f_{\text {sel }}$ within a finite sphere in reciprocal space
- Graphical presentation of the selected fourier coefficients $f_{\text {sel }}$ and the primitive unit cell in reciprocal space
- Inverse fourier transformation of the selected fourier coefficients $C^{\prime}=i f f t 3\left(f_{\text {sel }}\right)$ for a graphical density map of the primitive unit cell in real space (to check the real ϵ-distribution used for further calculations)
- Construction of the matrix ${ }^{1}$ (hermitian), who's eigen values are the $c^{2} \omega^{2}$
- Calculation of the eigen values for equal spaced points in several specified directions in the reciprocal unit cell (dispersion relation), graphical presentation
- Calculation of the eigen values for a discrete subdivision of the reciprocal unit cell and counting the occuring frequencies (density of states; $D(\omega)$), graphical presentation and .txt-file for further use

[^0]
2 simple cubic

- Conventional unit cell: $a=100 \mathrm{~nm} ; \epsilon_{C}=1$
- One close packed sphere with $\epsilon_{S}=13$

Figure 1: Primitive unit cell in real space and reciprocal space

Figure 2: Dispersion relation and density of states

3 inverse face centered cubic

- Conventional unit cell: $a=100 \mathrm{~nm} ; \epsilon_{C}=13$
- One close packed sphere with $\epsilon_{S}=1$

Figure 3: Primitive unit cell in real space and reciprocal space

Figure 4: Dispersion relation and density of states

4 diamond structure

- Conventional unit cell: $a=100 \mathrm{~nm} ; \epsilon_{C}=1$
- Two close packed spheres with $\epsilon_{S}=13$

Figure 5: Primitive unit cell in real space and reciprocal space

Figure 6: Dispersion relation and density of states

5 inverse diamond structure

- Conventional unit cell: $a=100 \mathrm{~nm} ; \epsilon_{C}=13$
- Two close packed spheres with $\epsilon_{S}=1$

inverse diamond: Fourier coefficients
face centered cubic, 229 coefficients used

Figure 7: Primitive unit cell in real space and reciprocal space

Figure 8: Dispersion relation and density of states

6 hexagonal crystal structure

- Conventional unit cell: $a=b=c=100 \mathrm{~nm} ; \alpha=\beta=90^{\circ} \mathrm{deg} ; \gamma=120^{\circ} \mathrm{deg} ; \epsilon_{C}=1$
- One sphere with $\epsilon_{S}=13$; radius $=50 \mathrm{~nm}$

hexagonal: Fourier coefficients
hexagonal, 211 coefficients used

Figure 9: Primitive unit cell in real space and reciprocal space

Figure 10: Dispersion relation and density of states

[^0]: ${ }^{1}$ Photonic band structure calculations for 2D and 3D photonic crystals; Chapter 2.3: Plane Wave Expansion of Maxwell's Equations; Aaron Vincent Morton; 2002

