   Menu Outline Exercise Questions Appendices Lectures Student Projects Books Sections Introduction Atoms Molecules Crystal Structure Crystal Diffraction Crystal Binding Photons Phonons Electrons Band Model Crystal Physics Semiconductors

PHY.K02UF Molecular and Solid State Physics

## Fourier transforms

The Fourier transform of a function $f(t)$ using the [1,-1] notation is,

$$\mathcal{F}(\omega)= \int\limits_{-\infty}^{\infty}f(t)e^{-i\omega t}dt.$$

Using Euler's formula, you can think of this as the projecting $f(t)$ onto its cosine components and its sine components.

$$\mathcal{F}(\omega)= \int\limits_{-\infty}^{\infty}f(t)\cos(\omega t)dt+i\int\limits_{-\infty}^{\infty}f(t)\sin(\omega t)dt.$$

Consider a function that is nonzero only in the interval $t_1 < t < t_2$. The Fourier transform in this case is,

$$\mathcal{F}(\omega)= \int\limits_{t_1}^{t_2}f(t)e^{-i\omega t}dt.$$

The following form can be used to define $f(t)$ between $t_1$ and $t_2$. The function $f(t)$ as well as its Fourier transform $\mathcal{F}(\omega)$ are tabulated and plotted.

$f(t)=$
where $t_1=$  and $t_2=$  for frequencies $|\omega | <$ .

$t$   $f(t)$

 $f(t)$ $t$

The Fourier transform of $f(t)$

The integrals are calculated numerically using a method called Simpson's rule.

$\omega$   $\text{Re}[\mathcal{F}]$   $\text{Im}[\mathcal{F}]$

 $\mathcal{F}(\omega )$ $\omega$

Below, the integrand $I=f(t)e^{-i\omega t}$ is plotted in the complex plane from $t_1$ to $t_2$ for a specific frequency. The red point is $\mathcal{F}(\omega )$ at that frequency. Move the slider to see how the integrand changes as the frequency changes.

 $\text{Im}[I]$ $\text{Re}[I]$

$\omega=$