PHY.K02UF Molecular and Solid State Physics

Convolution theorem

The convolution theorem states that the Fourier transform of the product of two functions is the convolution of their Fourier transforms. In the [-1,-1] notation, the Fourier transform of the product of the two functions $f\left(\vec{r}\right)$ and $g\left(\vec{r}\right)$ is,

$$\mathcal{F}_{-1,-1}\{f\left(\vec{r}\right)g\left(\vec{r}\right)\}=\frac{1}{\left( 2\pi \right)^d}\int\limits_{-\infty}^{\infty} f\left(\vec{r}\right)g\left(\vec{r}\right)e^{-i\vec{k}\cdot\vec{r}}d\vec{r},$$

where $d$ is the number of dimensions. Expressing $f\left(\vec{r}\right)$ and $g\left(\vec{r}\right)$ in terms of their Fourier transforms yields,

$$\mathcal{F}_{-1,-1}\{f\left(\vec{r}\right)g\left(\vec{r}\right)\}=\frac{1}{\left( 2\pi \right)^d}\int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} F_{-1,-1}\left(\vec{k'}\right)e^{i\vec{k'}\cdot\vec{r}}d\vec{k'}\int\limits_{-\infty}^{\infty} G_{-1,-1}\left(\vec{k''}\right)e^{i\vec{k''}\cdot\vec{r}}d\vec{k''}e^{-i\vec{k}\cdot\vec{r}}d\vec{r}.$$

The exponential factors can be combined so that this can be expressed as some function of $\vec{k'}$ and $\vec{k''}$ times the Fourier transform of the plane wave $e^{i(\vec{k'}+ \vec{k''})\cdot\vec{r}}$. The Fourier transform of a plane wave is a $\delta$-function.

$$\delta(\vec{k}-\vec{k}')=\frac{1}{(2 \pi)^d}\int\limits_{\infty}^{\infty}e^{i(\vec{k}-\vec{k}')\cdot\vec{r}}d\vec{r}.$$ $$\mathcal{F}_{-1,-1}\{f\left(\vec{r}\right)g\left(\vec{r}\right)\}=\int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} \delta \left(\vec{k}-\vec{k'}-\vec{k''}\right) F_{-1,-1}\left(\vec{k'}\right) G_{-1,-1}\left(\vec{k''}\right)d\vec{k'}d\vec{k''}.$$

Integrating over $\vec{k''}$ yields,

$$\mathcal{F}_{-1,-1}\{f\left(\vec{r}\right)g\left(\vec{r}\right)\}= \int\limits_{-\infty}^{\infty} F_{-1,-1}\left(\vec{k'}\right) G_{-1,-1}\left(\vec{k'}-\vec{k}\right)d\vec{k'}.$$

This last line states that the Fourier transform of the product of two functions is the convolution of their Fourier transforms.