Menu Outline Exercise Questions Appendices Lectures Student Projects Books Sections Introduction Atoms Molecules Crystal Structure Crystal Diffraction Crystal Binding Photons Phonons Electrons Band Model Crystal Physics Semiconductors

PHY.K02UF Molecular and Solid State Physics

## The first Brillouin zone of a body centered tetragonal lattice

$\large \vec{k}=u\vec{b}_1+v\vec{b}_2+w\vec{b}_3\,:\,(u,v,w)$

 Symmetry points $(u,v,w)$ $[k_x,k_y,k_z]$ $\Gamma:\,(0,0,0)$ $[0,0,0]$ $X:\,(\frac{1}{2},0,0)$ $[\frac{\pi}{a},\frac{\pi}{a},0]$ $Z:\, (\frac{1}{2},\frac{1}{2},-\frac{1}{2})$ $[\frac{2\pi}{a},0,0]$ $N:\, (0,\frac{1}{2},0)$ $[\frac{\pi}{a},0,\frac{\pi}{c}]$ $P:\, (\frac{1}{4},\frac{1}{4},\frac{1}{4})$ $[\frac{\pi}{a},\frac{\pi}{a},\frac{\pi}{c}]$ $\overline{\Gamma X} = \frac{\sqrt{2}\pi}{a}$ $\overline{\Gamma Z} = \frac{2\pi}{a}$ $\overline{\Gamma N} = \frac{\pi}{ac}\sqrt{a^2+c^2}$ $\overline{\Gamma P} = \frac{\pi}{ac}\sqrt{a^2+2c^2}$ Symmetry lines $\Delta :\,(v,0,0)$ $0\lt v\lt\frac{1}{2}$ $\Sigma :\,(v,v,-v)$ $0\lt v\lt\frac{1}{2}$ $Y :\,(\frac{1}{2},v,-v)$ $0\lt v\lt\frac{1}{2}$ $\Lambda :\,(-v,v,v)$ $0\lt v\lt\frac{1}{4}+\frac{c^2}{a^2}$ $W :\,(\frac{1}{2}-v,v,v)$ $0\lt v\lt\frac{1}{4}$ $Q :\,(v,\frac{1}{2}-v,v)$ $0\lt v\lt\frac{1}{4}$

The real space and reciprocal space primitive translation vectors are:

$\large \vec{a}_1 = \frac{a}{2}(\hat{x}+\hat{y})-\frac{c}{2}\hat{z}$  $\large \vec{a}_2 = \frac{a}{2}(\hat{x}-\hat{y})+\frac{c}{2}\hat{z}$  $\large \vec{a}_3 = \frac{a}{2}(-\hat{x}+\hat{y})+\frac{c}{2}\hat{z}$,

$\large \vec{b}_1 = \frac{2\pi}{a}(\hat{k_x}+\hat{k_y})$  $\large \vec{b}_2 =\frac{2\pi}{a}\hat{k_x}+\frac{2\pi}{c}\hat{k_z}$  $\large \vec{b}_3 = \frac{2\pi}{a}\hat{k_y}+\frac{2\pi}{c}\hat{k_z}$.