|
| |
$\large \vec{k}=u\vec{b}_1+v\vec{b}_2+w\vec{b}_3\,:\,(u,v,w)$
| Symmetry points $(u,v,w)$ | $[k_x,k_y,k_z]$ | Point group |
| $\Gamma:\,(0,0,0)$ | $[0,0,0]$ | mmm |
| $X:\, (\frac{1}{2},0,0)$ | $[\frac{\pi}{a},0,0]$ | mmm |
| $Y:\, (0,\frac{1}{2},0)$ | $[0,\frac{\pi}{b},0]$ | mmm |
| $Z:\, (0,0,\frac{1}{2})$ | $[0,0,\frac{\pi}{c}]$ | mmm |
| $T:\, (0,\frac{1}{2},\frac{1}{2})$ | $[0,\frac{\pi}{b},\frac{\pi}{c}]$ | mmm |
| $U:\, (\frac{1}{2},0,\frac{1}{2})$ | $[\frac{\pi}{a},0,\frac{\pi}{c}]$ | mmm |
| $S:\, (\frac{1}{2},\frac{1}{2},0)$ | $[\frac{\pi}{a},\frac{\pi}{b},0]$ | mmm |
| $R:\, (\frac{1}{2},\frac{1}{2},\frac{1}{2})$ | $[\frac{\pi}{a},\frac{\pi}{b},\frac{\pi}{c}]$ | mmm |
| |
$\overline{\Gamma Y} = \overline{ZT}= \overline{XS}= \overline{UR} = \frac{\pi}{b}$ |
$\overline{\Gamma X} = \overline{YS}= \overline{ZU}= \overline{TR} = \frac{\pi}{a}$ |
$\overline{\Gamma Z} = \overline{YT}= \overline{SR}= \overline{XU}= \frac{\pi}{s}$ |
$\overline{\Gamma T} = \frac{\pi}{bc}\sqrt{b^2+c^2}$ |
$\overline{\Gamma U} = \frac{\pi}{ac}\sqrt{a^2+c^2}$ |
$\overline{\Gamma R} = \pi\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}$ |
| |
| Symmetry lines | Point group |
| $\Lambda :\,(0,0,w)$ $0\lt w\lt\frac{1}{2}$ | mm2 |
| $H :\,(0,\frac{1}{2},w)$ $0\lt w\lt\frac{1}{2}$ | mm2 |
| $G :\,(\frac{1}{2},0,w)$ $0\lt w\lt\frac{1}{2}$ | mm2 |
| $Q :\,(\frac{1}{2},\frac{1}{2},w)$ $0\lt w\lt\frac{1}{2}$ | mm2 |
| $\Delta :\,(0,v,0)$ $0\lt v\lt\frac{1}{2}$ | mm2 |
| $B :\,(0,v,\frac{1}{2})$ $0\lt v\lt\frac{1}{2}$ | mm2 |
| $D :\,(\frac{1}{2},v,0)$ $0\lt v\lt\frac{1}{2}$ | mm2 |
| $P :\,(\frac{1}{2},v,\frac{1}{2})$ $0\lt v\lt\frac{1}{2}$ | mm2 |
| $\Sigma :\,(u,0,0)$ $0\lt u\lt\frac{1}{2}$ | mm2 |
| $A :\,(u,0,\frac{1}{2})$ $0\lt u\lt\frac{1}{2}$ | mm2 |
| $C :\,(u,\frac{1}{2},0)$ $0\lt u\lt\frac{1}{2}$ | mm2 |
| $E :\,(u,\frac{1}{2},\frac{1}{2})$ $0\lt u\lt\frac{1}{2}$ | mm2 |
|