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Abstract

Series arrays of Josephson junctions have potential util-
ity as mm-wave/sub mm-wave oscillators. Here the
shunted junction model is used to analyze the noise driven
fluctuations of such arrays. These fluctuations are respon-
sible for the linewidth of the oscillations that the junctions
produce. We show that there are two types of fluctuations,
each of which make their own characteristic contribution to
the power spectrum. The form of these fluctuations is
calculated in the limit of small noise and we show that the
fluctuations increase as a dynamical instability is
approached.

Introduction

When a voltage is present across a Josephson junction,
high frequency oscillations of the supercurrent arise. This
is the ac Josephson effect, and it was long ago suggested that
this effect could be exploited to construct a rapidly tunable rf
generator.l The simplest generator of this type consists of a
single Josephson junction. Unfortunately single junction
generators have the practical limitations that their
impedance and output power are impractically small. For
this reason there has been an interest in fabricating rf gen-
erators from series arrays of Josephson junctions. If all of
the junctions of an N junction array oscillate coherently,
then the array will have N times the impedance and N2
times the output power as a single junction.2 Ideally these
arrays generate a single, stable frequency, but inevitable
fluctuations give the output a finite linewidth. It is the
form of the fluctuations and the resulting linewidth that
are the focus of this paper. Assuming that the fluctuations
at each junction are independent, then the voltage fluctua-
tions across the whole array will scale like YN .3 This nar-
rowing of the linewidth in coherent arrays has been
observed experimentally.4 Previous theoretical discussions
of the linewidth focused on voltage fluctuations which
have the form Vi{(t)=V(t+y(t)), where V(t) is the noise-
free voltage across the junctions and y(t) is a fluctuating
phase. In phase space y(t) corresponds to fluctuations along
the noise-free trajectory. Here we present an analysis which
shows that one additionally has further fluctuations; in this
case the voltage has the form V(t)=V(t+y(t))+Vr(t), where
Vr{t) describes fluctuations transverse to the noise-free tra-
jectory. Although the transverse fluctuations can often be
neglected, in the vicinity of certain dynamical instabilities
they can make a significant contribution to the voltage
fluctuations and thus to the power spectrum of the oscillat-
ing array.

Basic Circuit and Model

The general circuit diagram of the array we are consider-
ing is shown in Fig. 1. It is a series array of current biased
Josephson junctions shunted by a matched resistive load.
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Typically the load would be a mixer or a transmission line.
Both the generator and the load must be included in the
analysis since it is the load that couples the junctions
together and serves to phaselock them. The behavior of
Josephson junctions is commonly modeled using the
Shunted Junction Model.56 Within this model the equa-
tions that describe the behavior of the circuit in Fig. 1 are,
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We have used the usual reduced units, measuring current
in units of the critical current, I, voltage in units of IRy,
and time in units of fi/2eIlc.Ry. The resistance of the load
was taken to be equal to the resistance of the array,
R;=NRp. Here N is the number of junctions, Ry is the
appropriate shunt resistance of the junctions,
Bc=(2eICRN2Ci)/'h is a dimensionless measure of the capaci-
tance, Cj, of the junctions, I is the load current, and I is the
applied bias current. The @g's are the differences in the
phases of the quasiclassical, superconducting wavefunc-
tions on the two sides of the junctions, and Ex(t) and &; (1)
represent the random noise generated in the kth junction
and the load respectively. One unavoidable source of noise
is the Johnson noise associated with the resistors in the
equivalent circuit of the array. In this case the noise sources
act independently at each resistor, <€k(t)>=0, <€L(t)>=0,
<EK(DEK (t)>=Tpdkk'8(t-t"), <EL(EL(t)>=Tpd(t-t')/N, and
<EK(DEL(t')>=0, where Tp is the normalized bath tempera-
ture, Tp=4ekgT /Alc.

As we mentioned above this circuit has potential as an
rf generator if all of the junctions oscillate in the in-phase
solution, ¢x=0¢5. In the absence of noise the equation for
the in-phase solution is equivalent to the following single
junction equation,

Bc(?)o + 2(p° + Sin((po) =1Ip - (2)
Recently we analyzed the in-phase solution and showed
that for Bc>0, arrays with pure resistive loads can be stable.”
Previous work at B.=0 had shown that an inductive load

was needed to stabilize the coherent oscillations.! Unfor-
tunately the in-phase state is not always stable. Other stable
solutions are known to exist for these equations. The form
of these other solutions is discussed in Ref. {7]. In this paper
we will assume that the array is operating in a regime
where the in-phase solution is stable, and we discuss the
fluctuations about this stable solution.
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Figure 1.  Circuit diagram for a Josephson junction rf

generator.



Equation (1) is invariant with respect to translations in
time and is thus called an autonomous system. All
autonomous systems subjected to noise exhibit two funda-
mentally different types of fluctuations. We call the first
type phase fluctuations. These occur as random noise kicks
the system along its noise-free solution. For instance the
phase fluctuations modify the voltage across the array so
that it takes the form, V(t)=Vy(t+y(t)), where V(1) is the
noise-free voltage and y(t) are the phase fluctuations. The
effect that the phase fluctuations have on the linewidth can
be seen by writing the noise-free voltage in a Fourier series,
Vo(t)=(§amei°’t. With the phase fluctuations included V(t)

becomes, V(t)=§ameim(t+‘¥). Here each Fourier component
of the noise-free solution is multiplied by a fluctuating fac-
tor, el®V¥. Thus the lineshape of the Fourier component at
frequency ® is determined by the square of the Fourier
transform of el®V¥. The second type of fluctuations come
from the noise kicking the system transverse to the noise-
free solution. Mathematically the transverse fluctuations
are described by adding a term to the noise-free voltage,
V(t)=Va(t)+Vr(t). As we show below, near certain
instabilities (called local bifurcations) the transverse fluctu-
ations become very large. When this happens the trans-
verse fluctuations can make a significant contribution to
the power spectrum of the oscillations.

Both types of fluctuations can be visualized in the phase
space for the dynamics. A representation of the 2N dimen-
sional phase space is illustrated in Fig. 2. Periodic solutions
(such as the in-phase solution) describe a closed trajectory
in phase space. Phase fluctuations, y, describe deviations
tangent to this trajectory while transverse fluctuations, x,
describe deviations in the 2N-1 directions transverse to the
trajectory.

The simplest approximation that has been used to ana-
lyze single junctions is to ignore the transverse fluctuations
and to assume that,

=/ Z(bdt, (3)

where EZ(t) is Gaussian white noise, <E(t)>=0,

Figure 2. Representation of the in-phase solution in phase
space indicating how the phase fluctuations and the trans-
verse fluctuations describe the deviations from the in-phase
solution. For this system the dynamics take place on an N
dimensional cylinder where the variables ¢y are periodic
and the variables ¢ can take on any value. The in-phase
solution describes a closed trajectory on this N-cylinder.
The phase fluctuations are the deviations tangent to the in-
phase trajectory and the transverse fluctuations are the
deviations transverse to the trajectory.

<E(DE(t+1)>=x8(t). This leads to the familiar result that
the oscillations have a Lorentzian lineshape.5:8 In the next
section we find a better approximation for the fluctuations
in the limit of small noise.

Small Noise Approximation

When the noise is small, the deviations from the in-
phase solution are likewise small so we consider a solution
to Eqn. (1) of the form @x=¢g(t)+nNk. The linearized equa-
tions for My are,
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This approximation relies on linearizing the equations
about a stable, noise-free solution. This implies that the
results obtained here are only valid when the noise is suffi-
ciently small that it does not perturb the system too far
from the noise-free solution. For example, it has been
reported that larger noise can lead to hopping between
coexisting stable solutions.? The results presented here
would not be valid in this case.

We can greatly simplify Eqn. (4) by taking advantage of
the fact that any permutation, ¢j& @k, leaves Eqn. (1)
unchanged. We transform to the natural coordinates of
this system, which are the mean coordinate 9=(1/N)Znk,
and the N-1 relative coordinates, {k=nk-nk+1. The lin-
earized equations then become,

Bclk + Lk + €OS(Po)Ck = Ex-Exat (5a)
BcB + 29 + cos(po)d = 1ﬁ2’§" +&L (5b)
k

This transformation decouples all N coordinates in the
problem. Special attention should be given to ¥ since it is
the variable that describes the fluctuations across the entire
array. These are the fluctuations that appear in the genera-
tor output.

Neglecting noise for a moment, consider the homoge-
neous solutions to Eqn. (5). These solutions describe how
an impulse perturbation to the in-phase solution evolves.
Since Eqn. (5) is linear with periodic coefficients we know
from Floquet theory that the homogeneous solutions have
the form, ePty(t), where %(t) is a periodic function with the
same period as @o(t). The quantity, p, is called Floquet
exponent and Re(p) specifies the rate of decay of an impulse
perturbation. In particular the two homogeneous solu-
tions to Eqn. (5b) are,

‘9-21'/B¢
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Here 9 is periodic (p=0) and corresponds to a perturbation
along the in-phase solution. When a small perturbation of
the form e®) is added to the in-phase solution, the result is
equivalent to translating the origin of time by the small
quantity €, @o+€Po ~ Polt+€). Because of this property &
plays a spedial role in the analysis, namely, we identify the
inhomogeneous solution of Eqn. (5b) associated with 9 as
the phase fluctuations. When the in-phase solution is sta-
ble all of the other homogeneous solutions to Eqn. (5) decay
exponentially (p<0). These other inhomogeneous solu-
tions of Eqn. (5) are then identified as the transverse
fluctuations.
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Solving for the inhomogeneous solutions to Eqn. (5) in
terms of the homogeneous solutions, and inverting the
transformation to the relative and mean coordinates, one
obtainsl0 an approximate solution to Eqn. (1) of the form
Pk=Po(t+y)+xx where

t (1 ErE0do(t) ' 20p.
v = f N fe dt"dt" (7a)
Bce-Zt'/Bc $3(t")
t (1 Zak+¢L)<po
f————dr 10+ LS (NaXg  (7D)
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Here C are the inhomogeneous solutions to Eqn. (5a)
which, unfortunately, must be calculated numerically. The
procedure for doing this was described in our earlier paper.7
For large bias currents, ¢ is essentially a constant and can
be taken out of the integral in the expression for the phase
fluctuations. The resulting expression provides a correc-
tion to the simpler approximation for the phase fluctua-
tions given above in Eqn. (3). In this limit the amplitude
of the phase fluctuations is inversely proportional to the
bias current. For lower bias currents where ¢o cannot be
taken to be a constant, the phase fluctuations must be
determined numerically from Eqn. (7).

One experimentally accessible variable that exhibits both
phase and transverse fluctuations is the voltage across the
kth junction of the array. In the normalized units this
voltage is, Vk(D)=¢o(t+y)+x). Phase fluctuations enter the
voltage oscillations through the term, ¢o(t+y), and cause a
broadening of the linewidth of these oscillations. As we
stated above the lineshape of the Fourier component of ¢q
at frequency o is given by the square of the Fourier trans-
form of the fluctuating function, el®OW, where vy is deter-
mined from Eqn. (7). All of the transverse fluctuations of
this voltage have the same form. They are inhomogeneous
solutions to noise driven equations whose homogeneous
solutions are of Floquet form. Solutions of this sort have
been studied before.11 It was shown that these terms have a
power spectrum that is the sum of Lorentzians whose
shape is determined by the quantity pT, where p is the Flo-
quet exponent of a homogeneous solution, and T is the
penod of the noise-free oscillations. There is one Lorentz-
ian contributed at each Fourier component of ¢g by every
homogeneous solution. The Lorentzian's width is pro-
portional to pT and its amplitude is inversely proportional
to pT.

If any Re(pk) becomes greater than zero, then a small
perturbation will grow exponentially. Such an event is
called a local bifurcation and signals an abrupt change in
the dynamics. As one of these bifurcations is approached
(Re(pk)—0), one or more of the Lorentzians becomes large
and narrow and makes an important contribution to the
power spectrum. This phenomena, which has been
observed experimentally in other systems (including
chemical, electrical and optical experiments),12 is called the
noisy precursor to a bifurcation. It has been demonstrated
that the power spectrum has certain universal scaling
properties close to the bifurcation.!l The bifurcations of

the in-phase solution correspond to instabilities where all
of the junctions no longer oscillate identically. At this
instability (N-1)! new, symmetry related solutions appear.”
Thus the power spectrum of an individual junction of the
array consists of a peaks that correspond to the basic oscilla-
tions of the junctions which have been broadened by phase
fluctuations plus noise bumps which correspond to the
decay of the transverse perturbations. When an instability
is approached the noise bumps become more prominent in
the power spectrum.

For the rf generator application it is most important to
consider how the fluctuations effect the total voltage across
the array. For small noise the voltage across the whole
array is,
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Figure 3. Power spectrum of the total voltage across the

array showing the contributions of the phase and transverse
fluctuations. 3a - Large T/B. where the transverse fluctua-
tions make an nearly flat contribution to the power spec-
trum. 3b - Small T/B. where the contributions to the power
spectrum are peaked around the fundamental and the
harmonics of the basic Josephson oscillations.
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Note that the transverse fluctuations of the total voltage
depend only on the mean coordinate, 8. This leads to the
surprising result that the noise bumps which correspond to
instabilities where the array loses coherence do not appear
in the power spectrum of the total voltage across the array.
The power spectrum of the total voltage consists of two
components. The first is the broadening of the linewidth of
the oscillations due to phase fluctuations which was
described above. The other component is the noise bump
due to the transverse fluctuations. This component of the
spectrum contributes Lorentzians centered at the Fourier
components of ¢g. The amplitude and width of these
Lorentzians are governed by the dimensionless quantity,
pT, where p=-2/B¢. For small B and large T (large oscilla-
tion periods correspond to low bias currents), the noise
bumps will be very broad so the transverse fluctuations
contribute an essentially flat component to the power spec-
trum. In this case the linewidth will be due entirely to the
phase fluctuations. This is illustrated in Fig. 3a. For large
Bc or large bias currents (small T), the transverse fluctua-
tions contribute narrow Lorentzians at the Fourier compo-
nents of Po(t) which add to the phase fluctuations to make
up the linewidth (see Fig. 3b). In our previous work we
showed that the in-phase state of a resistively shunted array
is maximally stable for B.=0.75 and Ig=2.3. This maximally
stable state produces a power spectrum qualitatively like
that shown in Fig. 3a.

V(1) = No(t+y) + () f

Conclusions

The total voltage across an array of coherently oscillating
Josephson junctions exhibits two fundamentally different
types of fluctuations, each of which makes its own charac-
teristic type of contribution to the power spectrum. Phase
fluctuations broaden the peaks in the power spectrum that
correspond to the basic oscillations of the junctions and are
primarily responsible for the linewidth of these oscillations.
Transverse fluctuations contribute Lorentzian shaped noise
bumps to the power spectrum at the fundamental and
harmonics of the basic Josephson oscillations. These noise
bumps become larger and narrower as T/, increases, mak-
ing a contribution to the linewidth for large B. and large
bias currents. The approach of the instability which corre-
sponds to the array losing coherence is responsible for the
appearance of noise bumps in the power spectra of the
individual junction voltages but the impending instability
does not effect the power spectrum of the total voltage
across the array. Finally we emphasize that all of this anal-
ysis has assumed that the in-phase solution was stable and
that the noise was small. When either of these conditions
are not met nonlinear effects will will have to be taken into
account.
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