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Stability of Coherent Oscillations in Josephson Junction Arrays
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When series arrays of Josephson junctions are included in circuits there exists the possibility that the
junctions will phaselock and oscillate coherently. We present a method to study the stability of the phase
coherent state based on a determination of the eigenvalues of the return map associated with the
dynamics. The eigenvalues indicate how close the coherent state is to an instability. Therefore knowledge
of the eigenvalues allows us to find the operating point which maximizes the stability of the coherent state.
The power of our method is that arbitrarily large arrays are handled as easily as small arrays. For series
arrays of N junctions with small shunt capacitances we show that the coherent state always loses stability
in the same way, via a codimension N-1 bifurcation. We apply this method to Josephson junction arrays

proposed as rf generators.

When the current passing through a Josephson
junction exceeds the junction's critical current, the
supercurrent flowing through the junction
oscillates at a frequency that is proportional to the
voltage across the junction. This is the familiar ac
Josephson effect. When the oscillating
supercurrents of a number of junctions interact
with each other there exists the possibility that the
junctions will phaselock and oscillate coherently.
In this work we study the mutual phaselocking of
dc biased series arrays of Josephson junctions
shunted by a load impedance. In these circuits the
voltage across the junctions generates a high
frequency load current. This current flows through
all of the junctions and serves to couple them. In
the Resistively Shunted Junction (RS]) model the
equations that describe the behavior of the circuit
are [1]

B0, + 9 +sin(p) +1, =Ty k=1,...,N
N
; B=Y @)
I =1Ly Yy
yj = gl.(V,IL,y1,...,yM) i=1,...M

Where the ¢, are the phase differences across the
junctions, I is the bias current, I is the load
current, V is the voltage across the array, the yj's are
the M variables that specify the state of the load, and
fand g; are functions that describe the dynamics of
the load. The dimensionless parameters,
B.=(2eI R\2C)/h and B =(2el L) /1, characterize the

capacitance and the inductance of the circuit.

In the coherent state all of the junctions oscillate
with the same frequency and phase. In this state the
array acts like a single junction. This makes it
relatively simple to calculate the coherent solution.
Howeyer, calculating the coherent solution is not

enough; we also need to determine under what
conditions that solution is stable. To study the
stability of the coherent state we considered small

perturbations to the coherent solution, ¢, =¢+@,P.

Here the superscript ¢ denotes the coherent state
and the superscript p denotes the perturbation.
Linearizing around the coherent state results in a
set of 2N+M linear equations with periodic
coefficients. Using these equations one can calculate
how the perturbations evolve in time. If the
perturbations diminish with time then the coherent
state is linearly stable. If the pertrubations grow, the
coherent state is linearly unstable.

A symmetry in the problem, namely the
interchangability of the junctions, allows us to
make a transformation that simplifies the
linearized equations enormously.[2] We transform

to the mean coordinate, 9=Z¢ P, and the relative

coordinates, §k=<ka—(pk+lP, (k=1,...,N-1). This
transformation decouples the relative coordinates
from all of the other variables in the problem.
Further simplification results because all of the
relative coordinates obey the same equation. Thus,
because of symmetry, the analysis of the stability of
the original 2N+M dimensional problem reduces to
analyzing a set of 2+M coupled linear differential
equations.

The remaining equations are solved by
constructing the return map for this system. We
employ the return map formalism because it
provides a quantitative measure of the stability and
allows us to find the operating point that
maximizes the stability of the coherent state. A
return map, in this context, can be understood as
follows.[3] Any Nth order set of linear differential
equations with periodic coefficients can be written
in vector form as

u=Ft)u 2
where u is an N dimensional vector and F is a time
dependent NxN matrix which is periodic with
period T.  Since F is periodic, if u(t) is a solution of
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eq. (2) then u(t+T) must also be a solution. We
define a time independent matrix, A, by
u(t+T) = Au(t) (3)
where A is called the return map. Repeated
applications of the return map produce the solution
at later times.
u(t+nT) = ATu(t) @

The magnitude of the eigenvalues of the return
map provide a measure of the stability of the
coherent state. If all of the eigenvalues of A lie
inside the unit circle then the perturbations
diminish with time and the coherent state is stable.
If one or more eigenvalue crosses the unit circle the
perturbations will grow with time and the coherent
state is unstable. When the eigenvalue crosses the
unit circle we say that the system experiences a
bifurcation.

To demonstrate these techniques we calculated
the stability of the coherent state for the circuit
shown in Fig. 1. The circuit consists of a series array
of N Josephson junctions shunted by a series LC

load where B =1/(2N) and B=N/2. For simplicity

we have taken the junction capacitance to be equal
to zero. Figure 1 displays the magnitude of the
eigenvalues of the return map as a function of bias
current. Note that this figure is independent of N.

One of the eigenvalues is always equal to one. This
is always true for autonomous systems such as the
one we are considering. The coherent state is stable
for bias currents where all of the magnitudes of the
eigenvalues are less than or equal to one. In this
case the coherent state loses stability at a bias current
of 2. At this point the circuit experiences a
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Fig. 1. The magnitude of the eigenvalues for the
circuit in the inset is plotted vs. bias current. A is
the (N-1)-fold degenerate eigenvalue that crosses +1
at the saddle-node bifurcation. B is a single
eigenvalue equal to +1 characteristic of autonomous
systems. C and D are eigenvalues associated with
the degrees of freedom of the load.
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saddle-node bifurcation where N-1 of the
eigenvalues cross the unit circle at +1
simultaneously.  This is the only allowed
bifurcation that the coherent state can suffer when
the junctions have zero capacitance because the
expression for the degenerate eigenvalue is

;
= exp(- | cos(e°(h) & (5)
0

which is obtained by integrating the linearized
equations, is always a real, positive quantitiy. The
arrow in the figure indicates the operating point
where the coherent state is most stable. For lower
bias currents the circuit approaches the bifurcation
and for higher bias currents the load current
oscillations are smaller and the phases of the
junctions don't couple as strongly.

When the coherent state loses stability (Iz <2) the

array enters an antiphase state where each junction
oscillates at the same frequency but the sum of the
phases adds to zero.[4] Our simulations show that
the coherent solution is stable when the impedance
of the load is inductive at the fundamental
Josephson frequency .and that the anti-phase
solution is stable when it is capacitive. This
confirms the perturbation calculations for high bias
currents of Jain et al. [5]

In summary we have described a method that
provides a quantitative measure of the stability of
the coherent state of series Josephson junction
arrays. By taking advantage of a symmetry we were
able to reduce the order of the equations that needed
to be solved by N-1, where N is the number of
junctions in the array. The reduced equations were
then analyzed using the return map formalism.
This allowed us to determine the operating point
that maximized the stability of the coherent state.
Finally, for arrays of small capacitance junctions we
showed that the coherent state always loses stability
via a saddle-node bifurcation where N-1
eigenvalues cross the unit circle simultaneouly.
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