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Abstract

The dynamics of Josephson junction arrays is a topic that lies at the
intersection of the fields of nonlinear dynamics and Josephson junction
technology. The series arrays considered here consist of several rapidly
oscillating Josephson junctions where each junction is coupled equally to
every other junction. The purpose of this study is to understand
phaselocking and other cooperative dynamics of this system. Previously,
little was known about high dimensional nonlinear systems of this sort.
Numerical simulations are used to study the dynamics of these arrays.
Three distinct types of periodic solutions to the array equations were
observed as well as period doubled and chaotic solutions. One of the
periodic solutions is the symmetric, in-phase solution where all of the
junctions oscillate identically. The other two periodic solutions are
symmetry-broken solutions where all of the junctions do not oscillate
identically. The symmetry-broken solutions are highly degenerate. As
many as (N-1)! stable solutions can coexist for an array of N junctions.
Understanding the stability of these several solutions and the transitions

among them is vital to the design of useful devices.

From the technological point of view the most useful dynamical state of
the junction arrays is the in-phase state where all of the junctions oscillate
identically. A detailed analysis of the stability of the in-phase state is given
and the fluctuations about the in-phase state are described. Using this
analysis a proposal is made for the design of a generator of millimeter wave
radiation that maximizes the stability of the in-phase state. The other
technological application that is discussed is parametric amplification. The

relation between the instabilities of this system and the process of
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parametric amplification is described and a proposal is made for the design
of a high gain parametric amplifier that exploits a previously

undocumented instability of this system.
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§1. Introduction

In 1962 Josephson! first considered the tunnelling of Cooper pairs of
electrons between superconductors as a perturbation to the conventional
description of superconductivity. Based on that calculation he predicted two
startling new effects.

(i) For zero voltage difference between two weakly coupled

superconductors a dc current can flow, up to a maximum current,

I..

(ii) When a finite voltage is maintained between the

superconductors, an oscillating current appears of amplitude I and

frequency 2eV/h. Here V is the voltage, e is the charge of an
electron, and h is Planck's constant.
These are now known as the dc and ac Josephson effects. Shortly after
Josephson predicted these effects their existence was verified
experimentally.2 Researchers now routinely construct devices (called

Josephson junctions) that exploit these effects.

Several mathematical models have been developed to describe the
dynamics of Josephson junctions. In the simplest model a single junction
obeys the same equations as those for a pendulum. In the seventies it was
discovered that this deceptively simple looking model could exhibit
complicated and sometimes bizarre dynamics. Because of the rich dynamics
that the Josephson junctions can exhibit, they became an experimental
testing ground for the new concepts that were being developed in the field

of low dimensional nonlinear dynamics.3

In recent years the understanding of the nonlinear dynamics of low

dimensional systems has greatly increased and the focus of the research in



nonlinear dynamics has turned to high dimensional systems. Traditionally,
the high dimensional systems that have been studied were constructed by
coupling many low dimensional systems together. Groundbreaking work
along these lines was done in 1955 by Fermi, Pasta, and Ulam? who studied
a system of sixty-four harmonic oscillators with cubic coupling. They
intended to show that the anharmonicity would cause an even distribution
of the energy among the oscillators. This was to be used to justify the
ergodic hypothesis of statistical mechanics. The computer experiments
showed that the energy was not evenly distributed but rather the system
acted more like uncoupled harmonic oscillators. This puzzling result was
eventually explained by Kolmogorov, Arnold, and Moser who showed that
weak anharmonic coupling would not distribute the energy evenly among a
set of oscillators.> This early work foreshadowed the complexity that was
later observed in other coupled oscillator systems such as coupled pendula,
anharmonic oscillators, coupled logistic maps, and coupled circle maps.®
Here we continue in this tradition by considering arrays of many coupled
Josephson junctions. These are systems of identical, driven, dissipative
oscillators which are highly connected. Here every junction is coupled

equally fo every other junction of the array.

Like its predecessors the system studied here exhibits several interesting
dynamical features. For example, we will show that instabilities in the
dynamics of the junction arrays arise in which many symmetries of the
equations are simultaneously broken. After this instability as many as
(N-1)! stable solutions appear, where N is the number of junctions in the
array. With this tremendous number of solutions crowded into phase
space, these systems are highly sensitive to external noise. Even for
relatively modest sized arrays of 100 junctions, the 99! stable solutions

would be far too many to detect using a conventional computer. This



shows that care must be taken in interpreting numerical simulations of

high dimensional systems.

Apart from the fundamental aspects of high dimensional systems,
Josephson junction arrays need to be understood because they are used in
practical applications. For instance, the National Bureau of Standards uses
series arrays of up to 1500 Josephson junctions o define the U. 5. standard
volt.” Josephson junction arrays have also been considered in applications
as oscillators, mixers, and amplifiers.8 In these applications the arrays
generate and manipulate millimeter wave radiation. There is a program
now underway in Europe to build a receiver for far infrared astronomy
based on Josephson junction arrays. In the U. S. arrays are being developed
for use as local oscillators in terahertz analog circuitry. In order to design a
high dimensional system, such as a junction array, it is important to
understand the dynamics of that system and especially to understand the

dynamical instabilities that can occur.

In this work most of the discussion focuses on series arrays of Josephson
junctions. Series arrays have a potential application as millimeter wave
generators. In this application the oscillating supercurrents which arise
from the ac Josephson effect are the source of the radiation. Each junction
must oscillate identically so that the radiation from each junction adds
coherently. Consequently, the phaselocking of the junctions and the

stability of this coherent state will be discussed in detail.

This thesis is organized as follows. In section 2 the equations that model
Josephson junction arrays are introduced and the limitations of this model
are discussed. This work is also contrasted with previous work on

Josephson junction arrays, most notably that of Likharev and his coworkers.



In section 3 the dynamics of series arrays coupled to various loads are
described. Three distinct types of periodic solutions are observed as well as
period doubled solutions and chaotic solutions. One of the dynamical states
that is observed is the in-phase state in which all of the junctions oscillate
identically. In section 4, a stability analysis of the in-phase state is presented.
This analysis demonstrates the existence of the in-phase state in a broader
parameter range than had been appreciated previously. This result is
already being applied by groups designing and constructing practical arrays.
The numerical results of this analysis also extend the previous work by
providing a quantitative measure of the stability of the in-phase solution.
This section concludes with specific recommendations for designing arrays

which maximize the stability of the in-phase state.

Section 5 discusses the observed transitions between the dynamical states
using the language of bifurcation theory. The high symmetry of the arrays
causes some unusual bifurcations in which many Floquet exponents cross
the imaginary axis simultaneously. After one of these bifurcations occur,
there are many coexisting stable solutions. Building on the results of the
two sections preceding it, section 6 discusses the fluctuations to the in-phase
state. Here it is shown that there are two fundamentally different types of
fluctuations and that both types increase near a bifurcation. Section 7
discusses parametric amplification from a modern perspective. This point
of view helps explain why parametric amplifiers made out of Josephson
junctions arrays have had only limited success in the past. A proposal is
made on how to construct a high gain parametric amplifier using one of the

new bifurcations discovered here.

Throughout most of this work each junction of an array was assumed to

be identical. Section 8 discusses modifications to these results that must be



made when all of the junctions are no longer identical. It is shown that the
in-phase state still exists when the junctions are no longer identical. Section
9 discusses the in-phase oscillations of coupled 1-d arrays, 2-d arrays, and 3-d
arrays. Ironically it is often easier to determine the stability for the in-phase
solution to the more complex arrays than it is for the series arrays. This is
because a symmetry of the in-phase solution prevents it from being stable.
We suggest ways to stabilize the in-phase solution in these arrays by altering
the system. Finally, some of the results presented in sections 3,4,5,6, and 8

can be found in our previously published work.%-13



§ 2. Review

Josephson junctions are constructed by arranging two superconductors so
that they are weakly coupled. Typically the two superconductors are
separated by some nonsuperconducting material or barrier (see Fig. 2.1).

The simplest approximation for the supercurrent between weakly coupled
superconductors is Ig=Isin(¢p). Here I is the critical current which depends
on the temperature, the magnetic field applied, the geometry of the
superconductors and of the barrier, and on the materials used. The quantity
¢ is the difference in the phases of the quasiclassical superconducting wave
functions of the two superconductors. Because sin(@) is limited to the

range, -l<sin(g)<1, the supercurrent flowing through the barrier can never

be less than -I and can never be greater than L.

A statement of the ac Josephson effect is that the supercurrent oscillates
with an angular frequency of 2eV/h. Mathematically this statement relates

the voltage across the junction to the phase difference,
¢=29V
i 21

where the dot denotes a derivative with respect to time. In addition to the
supercurrent there may also be a normal current passing through the

barrier. Assuming that this current is proportional to the voltage, (Ohm's

law) the normal current flowing through the barrier is In= V/Rn=
9/ (2eRy), where Ry is the normal resistance of the barrier. Finally,

because of the geometry of the junction, there is a capacitance, C. The charge
collecting on this capacitor corresponds to a current of Icap=CVﬂC('p' /(2e).

By Kirchhoff's laws, these three currents must equal the bias current applied

to the junction, Ig+In+leap=1. Thus the dynamics of a single junction can be

modeled by the differential equation,
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This equation is called the shunted junction model which was first
discussed by Stewart and McCumber.14 The circuit diagram that represents
this equation is shown in Fig. 2.2. Here the X represents the
superconductive tunnelling channel. More sophisticated models can be
constructed by including corrections to the supercurrent or by using a more
realistic, voltage dependent, resistance for the normal current.
Nevertheless, the shunted junction model is a good approximation for a
Josephson junction and it will be used throughout this work. For a more
complete discussion of Josephson junctions see the books by Likharevl? and

by Van Duzer and Turner.16

It is convenient to normalize Eqn. 2.2 to reduce the number of constants.

Dividing the equation by I and rescaling time so that it is measured in units
of 1/2el-Ry, puts this equation into the form,

Be® + ¢ +sin(e) = Ia(t) 2.3
where Ip is the normalized bias current, Ig=I/I., and B measures the ratio of
inertia to dissipation in the system, B.=(2el R\2C) /1. In this form it is clear

that the model for a Josephson junction is equivalent to a damped driven

pendulum with a mass of B¢ and damping coefficient equal to 1.

The simplest solution to Eqn. 2.3 is the stationary solution. This solution
can only occur when the bias current, Ig, is a constant less than one. In this
case the junction reaches a time independent steady state, sin{g)=Ip,
corresponding to a motionless pendulum. In this solution, =0 so there is
no voltage across the junction even though there is a current, Ig, flowing

through it. This solution represents the dc Josephson effect. As Igis
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Fig. 2.1 - Schematic of a Josephson junction.

Fig. 2.2 - Circuit diagram for the shunted junction model of a single

Josephson junction driven by a bias current, L



increased above one the stationary state loses stability and a periodic

solution appears.

In terms of the pendulum analogy a periodic solution corresponds to a
rotating pendulum. Figure 2.3 shows a sequence of snapshots of the phase
of a junction exhibiting a periodic solution. The phase is measured as the
angle from vertical as it would be for a pendulum. Viewed successively

from left to right these snapshots form a movie of the phase motion.

For a constant bias current, exact solutions for the periodic states are

known in the two extremes, Bc=0 and Bc—e=. For B-=0 the solution is,

fp(t)=2tan"——~*-—u+¢tanl(§t/2) 1‘; E=V 13- 1 2.4
B
and in the limit of very large Be,

olt) = Igt 2.5

For other values of B¢ and Ig approximate solutions can be determined
numerically or by perturbation theory. In some cases more than one
solution is stable for the same parameter values. For example, when B.>>1
and Ip<1 both the periodic solution and the stationary solution are stable.
Which solution appears depends on the initial conditions of the junction.
Multiple stable solutions such as this often manifest themselves as

hysteresis loops in a plot of the observables. Figure 2.4a shows the voltage

plotted against the current for a junction with Be>>1. Notice that there are

two possible voltages for every current less than I.. For comparison Fig. 2.4b

shows the nonhysteretic current-voltage characteristics (I-V) of a junction

with Be=0. Plots of the I-V curves are a common way of viewing
experimental data on Josephson junctions. In this work the results of the
calculations will sometimes be presented as I-V curves to in order to

facilitate comparison with experiments.
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Fig. 2.3 - Snapshots of the phase of a junction at eight points in the cycle.
Viewed successively form left to right they form a movie of the phase
motion.
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As the parameters are further varied all periodic solutions to Eqn. 2.3 can
lose stability and a chaotic solution may appear. When this happens any
perturbative approach breaks down and the solutions must be calculated by
numerical integration. Chaos and the breakdown of perturbation theory are

discussed in appendix A.

Another interesting phenomena that Josephson junctions exhibit is
phaselocking. External phaselocking is the synchronization of the
oscillating supercurrent with a periodic bias current. Figure 2.5 is an
experimental I-V curve which shows the phaselocking of a Josephson
junction to an external ac drive. When the junction is phaselocked, its
frequency, and therefore its voltage, remain constant. This results in the flat
steps that appear in the I-V curve.l?7 These are called Shapiro steps and are
used to define the U. 5. standard volt. This type of external phaselocking is
discussed in standard texts on synchronous motors and phaselocked loops.18
The existence of external phaselocking suggests that it may be possible for
the junctions to mutually phaselock. In this case there is no externally fixed
frequency but the interactions among the oscillators cause them to
synchronize. It is the mutual phaselocking among the junctions of an array

that we will be concerned with here.

Arrays
Many different arrays can be constructed by connecting Josephson

junctions together but for most of this work our attention will be focused on
series arrays of junctions shunted by a load impedance. Only simple passive
loads are considered here such as resistors, capacitors, and inductors, or
combinations of these. The general circuit diagram of the array we are

considering is shown in Fig. 2.6. When the constant bias current exceeds the

12
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Fig. 2.5 Current-Voltage curves of a single Josephson junction with an
external rf bias current. The flat steps in the voltage correspond to the
ranges where the junction is phaselocked to the drive frequency. (From A.
de Lozanne, Ph. D. Thesis, Stanford University, 1982),
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Fig. 2.6 - Circuit diagram for a series array of Josephson junctions shunted
by aload.
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critical current, oscillations arise causing the voltage across each junction to
oscillate. The oscillating voltages generate a high frequency current through
the load. This load current flows through all of the junctions and serves to
couple them. Under certain conditions the interaction between the
oscillating load current and the oscillating supercurrent flowing through
the junctions leads to mutual phaselocking and coherent oscillation of the

junctions in the array.

In this work the shunted junction model is used to calculate the
dynamics of the array. This model does not include propagation delays so it
is only valid for arrays small compared to the wavelength of radiation and
for distributed arrays. The equations that describe the behavior of the circuit

in Fig. 2.6 are,
Be®k(t) + ok(t) + sin{g(t)) + I (1) = I k=1,2,..N  26a
N
V(t) = kz, ok(t) = F(IL(1) 2.6b
=1

The first equation is a statement of the conservation of current and the
second that the voltage across the array of junctions equals the voltage
across the load. Every junction is coupled equally to every other junction
through the load current, I;. We have used the usual reduced units,
measuring current in units of the critical current, I, voltage in units of
I.Ry;, resistance in units of Ry, capacitance in units of fi/(2el Ry?),
inductance in units of i/(2el.), and time in units of h/2el-Ry. Here N is
the number of junctions, I is the load current, Iy is the applied bias current,
and F(I;) is the functional that relates the load current, I;, to the total
voltage, V, across the array. (For instance when the load in Fig. 2.6 is a

capacitor F(I} )=(1/C)f 1 dt.)

15



The reason for studying this particular array is that it may have practical
applications. It was long ago suggested that the high frequency oscillations
of the supercurrent that appear due to the ac Josephson effect could be
exploited to construct a rapidly tunable rf generator.8 The simplest
generator of this type consists of a single Josephson junction. Unfortunately
single junction generators have the practical limitations that their
impedance and output power are impractically small. For this reason there
has been interest in fabricating rf generators from series arrays of Josephson
junctions. If all of the junctions of an N junction array oscillate coherently,
then the array will have N times the impedance, N2 times the output
power, and 1/N times the linewidth as a single junction.19 These potential
benefits of arrays of junctions are well understood but determining the
conditions under which the junctions mutually phaselock has remained a

problem.

Groundbreaking work in the understanding of the phaselocking of series
arrays of Josephson junctions was made by Jain, Likharev, Lukens, and
Sauvageau.® They used a multiple time scale technique to calculate an
approximate solution for the in-phase state. This calculation used the exact
solution of an array of junctions with B-=0 and no load as its starting point
(Eqn. 2.4). Two times were then introduced: a fast time for the Josephson
oscillations, and a slow time for the changes in the frequency of the
oscillations. By solving the equations selfconsistently in these two time
domains they obtained an approximate solution for junctions with B.=0 and
various loads. Among their many results was that the in-phase solution is
stable when the load is inductive and that it is unstable when the load is
capacitive. We use a more general numerical approach to study

systematically the stability of the in-phase state and found that their results

are only valid for a narrow range of .. The reason is that for most loads

16



there is a line of bifurcations near B-=0. One would not expect the results of

a perturbation calculation to be valid past a bifurcation. Our results show

that the phaselocking is strongest when =1 independent of the type of
load. We now turn to a numerical study of the dynamical states of the

series arrays.

17



§3. The Dynamical States

In this section the dynamical states of series arrays of Josephson junctions
observed in our study are described. The dynamical states were determined
by using a computer to simulate the dynamics of the the array shown in Fig.
2.6. Six different loads were examined: a resistor (R), a capacitor {C), an
inductor (L), a series RL load, a series LC load, and a parallel LC load. This is
a representative sample of the loads that might be encountered in
applications. In each case the bias current was adjusted so that the junctions
were oscillating and then the simulation calculated the time evolution of
all of the junctions in the array. In these calculations the normalized
parameters, B¢ and I, were varied in the range from 0 to 5. Within this
range three distinct types of periodic solutions were observed as well as
period doubled solutions and chaotic solutions. Other periodic or
quasiperiodic solutions may exist but were not observed in the simulations
described here. The three periodic solutions, which were observed over
fairly large parameter ranges, are called the in-phase solution, the antiphase

solution, and the split solution. These are each described below.

A variety of numerical integration routines (Euler's method, predictor-
correctors, Runge-Kutta) were used to simulate the dynamics, all of which
gave essentially the same results. All of the data presented here was
calculated by either a second order or a fourth order Runge-Kutta routine.20
To check that these routines were accurately simulating the dynamics, the
integration step size was halved and the simulations were run again to see
if the same results were produced. Ironically, it is easier to simulate
dissipative systems such as these junction arrays than it is to simulate a
conservative system such as the harmonic oscillator. The reason is that

dissipative systems have stable atiractors and when the numerical

18



integration routine makes an error the dynamics tends to correct the error
and drives the simulation back towards the real solution. This self-

correcting action does not take place in conservative systems.

The in-phase solution
The simplest type of periodic solution is the in-phase solution. In this

case each junction oscillates with the same frequency and phase, that is
PK=0j Experimental evidence for the existence of this state was first .
presented in the sixties.2! The in-phase solution is the most important to
understand from the technological point of view because it is the most
suitable state for generator, mixer, and parametric amplifier applications.
Because of its importance, the stability and fluctuations of the in-phase state
will be discussed in detail in later sections. When all the junctions oscillate
identically, Egn. 2.6 for the dynamics of the array reduces to a single
equation which is equivalent to that for a single junction.

BeBolt) + 9olt) + sin(po(t)) + IL(H) = Ig 3.1
Thus, in the in-phase state, the entire array acts like a single junction. Each
junction oscillates with the same frequency and phase. The equivalence of
the in-phase state and the corresponding single junction problem greatly
reduces the amount of computation required to calculate the in-phase

solution. The in-phase solution was observed to be stable roughly in the

parameter range Pclp>1 for resistive and capacitive loads, and was stable for

inductive loads roughly in the range B.>1. A detailed discussion of the

stability of the in-phase state is given in section 4.

The antiphase solution
The antiphase solution is a periodic solution in which all of the

junctions oscillate with the same frequency but each has a distinct phase. In

the antiphase state we find that the phases of all of the junctions arrange

19



themselves such that the fundamental Fourier component of the
oscillations is absent in any observable measured across the entire array.
This is a phaselocked solution in the sense that all of the junctions have a
definite phase relationship but their phases are not identical like they are in
the in-phase solution. Figure 3.1a-3.1f shows snapshots of the phases, @y, of
two, three, four, five, six, and ten junction arrays in a typical antiphase
solution at eight points in a cycle. The phases are measured as angles from
vertical as they would be in the pendulum analogy to Josephson junctions.
Viewed successively from left to right the snapshots form a movie of the
antiphase solution. Note how the phases are spread out, tending to add
destructively in this solution. For comparison, Fig. 3.1g shows a movie of

the in-phase state which looks the same for any number of junctions.

Another way to visualize these solutions is to plot the supercurrents of
all of the junctions as a function of time. Such time series for the in-phase
and antiphase solutions of a three junction array are shown in Fig. 3.2. In
the in-phase state all of the supercurrent oscillations are the same so the
total voltage oscillations across the array scales with the number of
junctions in the array. In the antiphase state the supercurrent oscillations
are staggered so that the total voltage oscillations across the array are nearly
zero. The power spectra of the voltage oscillations across the array are
shown in Fig. 3.3. Notice that due to the staggering in the antiphase state,
the fundamental of the voltage oscillations vanishes in this state. The
disappearance of the fundamental in two junction series arrays was
observed experimentally by Finnegan and Wahlsten.22 They could not
measure the relative phases of the junctions but they proposed that this was
evidence for the existence of an antiphase state. One way the different
antiphase solutions could be distinguished experimentally would be by

beating together the oscillations of two different junctions with a mixer.

20
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Fig. 3.1 - Six sets of snapshots of the phases, ¢k, of an N junction array in the

antiphase solution at eight points in a cycle. The phases are measured as
angles from vertical as they would be in the pendulum analogy to
Josephson junctions. Viewed successively from left to right the snapshots
form a movie of the antiphase solution. Note that the phases tend to add
destructively in this solution. The load in each case was a series inductor-
capacitor where L=N/2, C=1/(2N), Ig=2.5, B-=2.5, where N is the number of
junctions. (3.1a) - N=2. (3.1b) - N=3. (3.1c) - N=4. (3.1d) - N=5. (3.1e) - N=6.
(3.1f) - N=10. Figure 3.1g is a movie of the in-phase solution. Movies of the
in-phase solution look the same no matter how many junctions are
involved. '
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Fig. 3.2 - Time series of the supercurrents of the in-phase state and the
antiphase state for arrays with three junctions. The supercurrent
oscillations are the same for each junction in the in-phase state but they are

staggered in the antiphase state.
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Fig. 3.3 - The power spectra of the voltage oscillations across a three junction
array for the in-phase state and the antiphase state. The staggering of the
oscillations in the antiphase state results in the disappearance of the

fundamental.
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The response at dc would tell you the relative phase of the two junctions. A

number of such measurements would specify the antiphase state.

Although we observe no fundamental Fourier component in the
antiphase state, higher harmonics of the voltage oscillations are present.
The amplitudes of these harmonics decrease with increasing bias current, so
for high bias currents only small voltage oscillations appear across the array.
Since it is these voltage oscillations that generate the currents that couple
the junctions, at high bias current there is only weak coupling among the
junctions. In the limit of vanishingly small ac load current, the equations
for the array of junctions decouple into N independent equations, each
identical to the equation for a single junction with no external load. The
actual behavior of an array in the antiphase state approaches this limiting
solution as the bias current is increased and the ac Josephson oscillations
have less harmonic content. Thus a good approximation for the antiphase
solution of a series array of Josephson junctions can be constructed by
describing each junction in the array by the solution of a single junction
without an external load, and then distributing the phases of the junctions
between zero and 2x, so that the fundamental Fourier cdmponent on the

single junction oscillation vanishes.

There is only one way that the conditions for the antiphase solution can
be met by arrays of two or three junctions. In order that each junction have
a distinct phase and that the fundamental Fourier component vanish, each
junction must oscillate with the same waveform, but the waveforms must
be spaced in time by T/2 in the two junction case and by T/3 in the three
junction case, where T is the period of the oscillations. For more than three
junctions there are many ways to satisfy the conditions for the antiphase

state. For instance, one might imagine that for a four junction array the
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junctions could break into two pairs and the waveforms of the junctions
within a pair could be spaced by T/2. The spacing between the pairs could be
anything at all and still satisfy the condition that the amplitude of the
fundamental oscillations be zero. The simulations show, however, that this
is not the case. (see Fig. 3.1) It is not understood why the antiphase

solutions for more than three junctions have the exact form that they do.

If the junctions in a series array are assumed to be identical then the
system possesses a permutation symmetry: any junction can be exchanged
with any other junction. A solution breaks this symmetry if the result of
permuting two junctions does not give the same solution back again. The
antiphase solution is such a symmetry broken solution. Any
transformation that permutes two of the junctions will usually generate
another antiphase solution. For this reason the antiphase solution should
really be thought of as a set of solutions. Each member of this set can be
generated by permuting the junctions of a single example of the set. Since
each junction has a distinct phase in the antiphase solution, it follows that
there are at least (N-1)! distinct antiphase solutions of an N junction array.
The number of solutions grows so quickly that for N>100 it would be
impossible to sirnulate all of the antiphase solutions even on the most
powerful computer. Here is an example of where just running a simulation
without understanding how many solutions may exist in phase space, could
lead to an incorrect conclusion. One expects that this is a generic problem

for dynamical systems of many degrees of freedom and high symmetry.

When any of the antiphase solutions is stable then we know by
symmetry that they are all stable. This means for large N that there can be
very many stable, coexisting antiphase solutions. For large N, phase space

becomes so crowded with these stable solutions that one would expect that
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even the tiniest amount of noise would cause the system to hop from one
antiphase solution to another. This situation has been studied in a related
system that has the same symmetry and connectivity.23 The noise
sensitivity of coupled circle maps was studied numerically for several
different noise levels. These coupled maps also exhibit antiphase solutions
that crowd phase space. In this study the noise was held at a constant level
and the number of maps was increased. When a critical number of
attractors was reached the system began to wander from one antiphase
solution to another. When this happened the many antiphase solutions
effectively merged into one pseudoattractor and the system wanders
diffusively on that pseudoattractor. An observed consequence of this
hopping is the appearance of low frequency noise when the diffusive
motion among the antiphase attractors begins. There is also evidence that
the many antiphase solutions crowd the in-phase solution decreasing the
basin of attraction for the in-phase solution. This makes the in-phase
solutions more sensitive to noise as the number of maps increases. One
expects that the same sort of behavior will occur for the Josephson junction

arrays.

For all current applications the antiphase solution is undesirable. Since
the phases of the junctions conspire to eliminate the fundamental Fourier
component of the oscillations an array operating in this state would not be a
good rf generator. In mixer or amplifier applications each junction would
interact with the signal with a different phase so the net result would cancel
out. Furthermore the crowding of stable antiphase attractors in phase space

may lead to the undesirable appearance of low frequency noise.
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The split solution

The third type of periodic solution that was observed is the split solution.
In this case the phases of the junctions divide into a small number of
coherent subgroups. Arrays with even numbers of junctions form two
groups where half of the junctions oscillate with one phase and half
oscillate with another. Odd numbered arrays with greater than three
junctions also form two groups, dividing themselves as evenly as possible.
The case of three junctions seems to be a special one, with all three
junctions out of step. Figures 3.4a-3.4e illustrate the behavior for arrays of
two, three, four, five, and fifty junctions. Notice that for arrays of four or
more junctions the solutions look very much like the two junction case,

even for as many as fifty junctions.

The split solution must also be considered to be a set of solutions since it
has lower symmetry than the full permutation symmetry of the equations.
In this case there are N!/{(c!/(N-a)!), symmetry related solutions in the set,
where « is the integer part of N/2. In the large N limit there are 2N split
solutions. This solution has the same disadvantages as the antiphase

solutions for any technical applications.

Period doubled states, chaos

As the bias current flowing through the array is varied these periodic
states can lose stability. When this happens symmetry broken states, period
doubled states, or chaotic states sometimes appear. A detailed description of
what happens at the instabilities when the periodic states lose stability will
be given in the section 5. Here some examples of the more exotic solutions

that appear are presented.
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Fig. 3.4 - Movies of the split solution. This solution has twice the period of
the in-phase solution. For more than three junctions the phases form
coherent subgroups and half of the junctions osdillate with one phase while
half oscillate with another. The load in this case is a resistor, R=N, Ig=1.7,
Be=1. (3.4a) - N=2. (3.4b) - N=3. (3.4c) - N=4. (3.4d) - N=5. (3.4e) - N=50.

28



One way to visualize these states is by looking at phase portraits of the
dynamics. Figure 3.5 is a collection of phase portraits constructed from the
dynamics of two junction arrays. These phase portraits are projections of
the circuit's phase space trajectories onto the sin(@) - sin(ps) plane.
Physically, the phase portraits can be interpreted as plots of the supercurrent
of one of the junctions plotted against the supercurrent of the other
junction. The phase portrait should be thought of as two dimensional
windows looking into phase space that allow us to infer the symmetry and

topology of the solutions.

In Fig. 3.5a the phase portrait is a diagonal line stretching from [-1,-1] to
[1,1], corresponding to an in-phase solution (¢p1=¢2). Phase portraits such as
this are observed whenever the in-phase solution is stable. When the bias
current is decreased the in-phase state loses stability and a period-doubled
solution appears (see Fig.3.5b). Notice that this solution makes two loops in
phase space before repeating itself and thus has twice the period of the in-
phase solution. (The curve can intersect itself since it is only a projection of
the true, nonintersecting trajectory onto the plane.) This solution is
coherent in the sense that there is a definite (time dependent) phase
relationship between the oscillations of the two junctions but they do not
oscillate identically as they do in the in-phase solution. After another
period-doubling bifurcation occurs, a the new solution that appears has four
times the period of the (now unstable) in-phase state (see Fig. 3.5¢). Further
decreasing the bias current leads to a cascade of period-doubling bifurcations.
Each new solution that appears has twice the period of the preceding
solution. Eventually this sequence of periodic doublings leads to a chaotic
solution (see Fig. 3.5d). A complete description of the period doubling route
to chaos can be found in Feigenbaum's work.2¢ Chaotic behavior is mostly

observed for arrays with capacitive loads, biased in the vicinity of the

29



(c)

sin (¢,)

sin (¢,)

Fig. 3.5 - These phase portraits are projections of the two junction array
trajectory in phase space onto the sin{p1)-sin(¢2) plane. (3.5a) - In-phase
solution observed at Iz=2.3, Bc=.75. (3.5b) - Solution with twice the period of
the in-phase oscillations observed at Ig=1.7, B=1. (3.5¢) - Solution with four
times the period of the in-phase oscillations observed at Ig=1.5, fo=1. (3.5d) -
Chaotic solution observed at Ig=1.45, Bc=1. (3.5¢) - Symmetry-broken
solution observed at Ig=1.2, B.=1. (4f) - Antiphase solution observed at
Ig=1.2, Be=0.1. In each case the load was a resistor where R=N in the
normalized units.
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critical current. Finally Fig. 3.5e shows an example of a symmetry broken
solution. This solution does not share the permutation symmetry of the

governing equations; indeed ¢1(t) and @3(t) have different waveforms

altogether, though they do have the same period.
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§4. Stability Analysis of the In-phase Solution

Since the in-phase state is probably the most useful from the
technological point of view, the next three sections are devoted to a detailed
analysis of this state. Section 5 examines the transitions from the in-phase
solution to the other solutions and section 6 discusses the fluctuations about
the in-phase solutions. In this section a generalized linear analysis is used
to calculate the stability of the in-phase solution. Here we calculate not only
where the in-phase solution loses stability, but we also determine
quantitatively how stable the in-phase solution is, whenever it is stable.
Unfortunately, even in this linear analysis, numerical methods must be
used. The numerical results of this analysis are presented for series arrays
shunted by six representative loads. This section concludes with specific
recommendations for the design of arrays that maximize the stability of the

in-phase solution.

To determine the stability of the in-phase solution consider small

perturbations about that solution, (px=9o+1Nk, I=I +). Linearizing Eqn. 2.6
around the in-phase solution results in a set of linear differential equations

with periodic coefficients,

Beiik(t) + k() + cos{po(t))ny () +i{t) =0 k=1,2,...,N 4.1a
$ k() = FaL )i 4.1b
k=1

where @y(t) and I (t) represent the in-phase solution, and are functions of
period T that solve Eqn. 3.1. F(IL(t)) is the derivative of the load functional,
F(I), evaluated at the in-phase current. This functional is different for each

type of load. For instance, for a resistive load the functional is simply,

F(I)=(I)/R.
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The linearized equations can be simplified greatly by taking advantage of

the permutation symmetry of the system. (Any permutation, njenk,

leaves Egn. 4.1 unchanged.) We transform to the natural coordinates of
this system, which are the mean coordinate 8=(1/N)Z 1y, and the N-1

relative coordinates, {i= Mk- Nk+1. This transformation was suggested by

Kurt Wiesenfeld. The equations (4.1) then become,

Bolk(t) + Lt} + cos(go(t))ik(t) =0 k=1,2,...,N-1  4.2a
BB (h) + B(1) + cos{po(t))o(t) +ift) =0 4.2b
NS () = F'Io(t)it) 4.2¢c

This transformation decouples all N coordinates in the problem. Further
simplification results because all of the relative coordinates obey the same
equation. Thus, because of symmetry, the stability analysis of the original
N+1 equations reduces to solving the above set of three equations. The
mean coordinate describes the average motion of the perturbations and the
relative coordinates describe the difference in the dynamics of the
individual junctions. The in-phase solution, ¢4, will remain stable as long
as the relative coordinates do not grow. We therefore focus our attention

on Eqn. 4.2a.

Equation 4.2a arises in many physical problems and can be analyzed using

Floquet theory.Z5 The analysis shows that any solution to this equation can

be expressed as a linear combination of two fundamental solutions, {5(t)
and {p(t), which are specified by the initial conditions: {;(0)=1, éa(0)=0,
Cp(0)=0, {p(0)=1. Since cos(gy) is a periodic function, {(t+T) and {p(t+T)
must also be solutions to Eqn. 4.2a, which can be expressed in terms of {,(t)

and (p(t). This leads to the vector equation,

(ca(m) H LT La(T) Xca(t)) 43
Co(t+T) Eo(T)  Co(T) Als(t)
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The eigensolutions of Eqn. 4.3 are called the Floquet solutions and can be
put in the form {;=ePly;(t), {r=eRx,(t), where x;(t) and x(t) are periodic
functions of period T and p1+pa=-1/P.. The p's are called the Floquet
exponents and their real parts determine the stability of the perturbations.
They are related to the eigenvalues, Aj, of the matrix in Eqn. 4.3 by
pj:ln(lj)/T. If both Re(pq) and Re(ps) are negative, then any initial
perturbation decays and the in-phase solution is linearly stable. If either
exponent has a positive real part, the perturbations grow and the in-phase
solution is linearly unstable. Finally if either Re(p1)=0 or Re(p3)=0, then the
perturbations to Eqn. 4.2 neither grow nor decay: we then say that the in-
phase state is (linearly) neutrally stable, and nonlinear terms omitted in
writing Eqn. 4.1 determine the ultimate stability of @g(t). Note that the
imaginary part of the Floquet exponents are determined only up to an
integer multiple of 2ri/T. To avoid any ambiguity we will pick
-nt/T<Im(p)sn/T.

Limiting cases

Before discussing the numerical solutions to these equations we consider
approximate solutions for the Floquet exponents in various limits. The
approximate solutions give physical insight and they also provide a check
on the numerical work. First consider the large B¢ limit. We know from
Floquet theory that,

p1+p2= -1/Bc 44
Let p, represent the greater of the two exponents and p. the lesser.
Whenever p,>0 the in-phase solution is unstable. Using this notation Eqn.
4.4 can be written as the inequality, p,2-1/(2B). For large B, p, can either be
a tiny negative number or a positive number. Thus the in-phase state is

either barely stable or unstable for large B¢.
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Next consider the large Ig limit. For large bias currents, cos(@g) oscillates

with a period much shorter than any other time in the problem. We can

therefore employ the averaging method?26 to find an approximate solution

to Eqn. 4.2a. In this approximation, which is valid for B>>T~2n/Ip, we

replace cos(py) with its average value, cos(@g). The solutions to the

averaged equation are

_-13v1-4B.C08(¢o) 45
2B
For Ip>>1, cos(@g) is nearly sinusoidal and p,~-c0s(po)—0. Hence the in-

p.t p-

e and e where  ps

phase solution is stable for cos{y)>0 and approaches neutral stability as the
bias current increases. In the pendulum analogy the condition, cos(pg)>0,
can be interpreted as saying that the in-phase state is stable when the

pendula hang down on average. From this analysis we conclude that arrays

of junctions with Ig>>1 will either be unstable or barely stable.

In the highly damped limit one can take Bc=0 and the equation for the

relative coordinate can be solved exactly. Direct integration of Eqn. 4.2a in

this case yields,

1 4.6
L(t)= exp J cos(go(t'))dt’

o

From this solution we see that such an array will once again phase-lock

when cos(¢ps)>0. By differentiating Eqn. 3.1 in this case one finds

COS((po)=:—lj I_'-i)—dt 4.7
, T o (PO(t)

Except for bias currents close to the critical current both I; (t) and 0o(t) are

nearly sinusoidal, periodic functions. Here @p() is the voltage across the
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load and I (t) is the current through the load so I () leads (‘po(t) by n/2 when
the load is capacitive, I; (t) lags ©o(t) by ©/2 when the load is inductive, and
I, () has the same phase as Qg(t) when the load is resistive. These phase
relationships taken together with Eqn. 4.7 dictate the sign of cos(@o) and
show that in this limit (B=0, Iz>>1) the junctions will phase-lock with an
inductive load, will not phase-lock with a capacitive load, and will be
neutrally stable with a resistive load. This agrees with the earlier
perturbation calculation of Jain, Likharev, Lukens, and Sauvageau,8 and

with our numerical results in this limit which are presented below.

Numerical results of the stability analysis
For the general case the Floquet exponents have to be calculated

numerically. This has been done for six representative array circuits which
include a resistive load, a capacitive load, two inductive loads, and series
and parallel resonant LC loads. The Floquet exponents were calculated in
each case by numerically determining {,(t), {p(t), and &)o(t) by means of a
Runge-Kutta algorithm and then using these results to diagonalize the
matrix of Eqn. 4.3. Each time the matrix was diagonalized, a check was
performed to insure that |1AjA,-eT/B| was less than 0.05. The condition,
Aqho-e~T/B=0, is equivalent to py+p=-1/P¢ which is an exact result of Floquet
theory. When the period of the oscillation gets long (T>>1), as it does for
bias currents near the critical current, longer numerical integrations are
required and it becomes more difficult to calculate the Floquet exponents.

In fact for low bias currents the condition, p,<-1/(2B¢), is violated in Fig. 4.1a

and 4.1b although the numerical results are within the limits stated above.

In Fig. 4.1a- 4.1f we plot contours of the largest real part of the Floquet

exponents associated with the relative coordinate as a function of the

junction capacitance, B¢, and the bias current, I for each of these loads.
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Fig. 4.1 - Contours of the largest real part of the Floquet exponents are
plotted as a function of the junction capacitance, B¢, and the bias current,
Iz. The in-phase solution is unstable for Re(p)>0 and is most stable for the
most negative exponents. These plots relate the stability of arrays with an
arbitrarily large number of junctions where the impedance of the load
scales with the number of junctions. (4.1a) - Resistive load with an
impedance matched to the impedance of the array, R=N. (4.1b) -
Capacitive load, C=3/N.
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Fig. 4.1 continued - Contours of the largest real part of the Floquet
exponents are plotted as a function of the junction capacitance, B, and the
bias current, Iz. (4.1¢) - Load is a series resistor-inductor, R=N, L=3N.
(4.1d) - Load is a series inductor-capacitor, L=3N, C=5/N. Here a large
capacitor is used to block dc¢ currents which would short the junctions.
The load has an inductive impedance at all relevant frequencies.
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Fig. 4.1 continued - Contours of the largest real part of the Floquet
exponents are plotted as a function of the junction capacitance, Pe, and the
bias current, Iy. (4.1e) - Load is a series inductor-capacitor which passes
through a resonance at a bias current of about 2, L=N/2, C=1/(2N). (4.1f) -
Load is a parallel inductor-capacitor with a large blocking capacitor to
prevent the inductor from shorting the junctions, L=N/2, C=1/(2N),
blocking capacitor=5/N. This load also passes through a resonance at a
bias current of about 2.
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These stability plots show the range of parameters over which the in-phase
solution is stable and they provide a quantitative measure of the stability.
The heavy line is the Re(p)=0 contour and separates the stable and unstable
regions. The dashed line corresponds to the transition to the zero voltage
state. To the left of this line the junctions no longer oscillate and questions
concerning coherent oscillations are moot. The in-phase solution is most
stable for the regions where the exponents are most negative. For instance
an exponent of -0.4 corresponds to the perturbations decreasing by a factor
of about ten for every cycle of the in-phase oscillations. As the figures

indicate we have observed stable in-phase oscillations in some region of the
Be - Iz plane for each type of load. Universally the strongest phase-locking

occurs for B¢ in the range 0-1 and Iy in the range 1-2. Lee and Schwarz found
similar results for the optimum phaselocking regime based on calculations
for two junction arrays.2? These plots relate the stability of arbitrarily large
arrays of junctions with a load that scales with the number of junctions. For
instance Fig. 4.1a relates the stability of a series array of N junctions shunted

by a resistor whose resistance is R=N in reduced units. The appropriate

scalings for the other circuits are given in the figure caption.

Figures 4.1a and 4.1b show that in-phase oscillations are stable in most of
the Bc-Ig plane when the load is resistive or capacitive. The stability plots
for the inductive loads, Fig. 4.1¢ -4.1d, are nearly the complement of the
stability plot for the capacitive load or resistive load. (In the circuit of Fig.
4.1d a large capacitor is included in series with the inductor to block dc
currents which would short the junctions, but the load appears inductive at
all relevant frequencies.) Roughly speaking, the in-phase oscillations are
stable for inductive loads in the regions where they were unstable for

capacitive loads. As B or Ig {or both) become large the real part of the

Floquet exponent approaches zero in all of these plots implying that the in-
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phase state approaches neutral stability. In this limit, arrays with a resistive
or capacitive loads are stable and approaching neutral stability while arrays
with inductive loads are unstable and approaching neutral stability. The
numerical results agree with the limiting expressions presented above in all

of the limits discussed.

The behavior of the stability of the in-phase solutions as the load goes
through a resonance is shown in Fig. 4.1e-4.1f. For low bias currents the
circuit in Fig. 4.1e has a capacitive impedance and the stability plot
resembles that of the simple capacitive load, Fig. 4.1b. For high bias currents
the circuit in Fig. 4.1e has an inductive impedance and the stability plot
resembles that of the simple inductive load, Fig. 4.1c. Analogous statements
can be made about the limiting regions in Fig. 4.1f. This shows how one can
piece together the approximate stability plots of more complicated circuits by

taking parts of simpler circuits in the appropriate limits.

Noise induced intermittent behavior

In several limiting cases we have shown that the in-phase solution is
barely stable. If the in-phase solution is the only stable solution in these
situations one would expect that this would lead to noisy or intermittent
behavior. To test this idea, times series of the in-phase solution were
recorded in a regime where the in-phase state was barely stable and a small
amount of noise was added. These time series are shown in Fig. 4.2. Plotted
on the vertical axis is a quantity called coherence where,

- 7 .

Coherence =';§ sin(¢k)}+(' cos(gy) ) 4.8

L B

k=1 Cok=1
When the array is in the in-phase state coherence=1. When the array is not

in the in-phase state coherence<1. The four plots in Fig. 4.2 show the

coherence plotted as a function of time for four different external noise
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Time Series of Coherence
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Fig. 4.2 - Coherence plotted against time for four different noise strengths.
Coherence takes the value 1 when the array is in the in-phase state. These
time series were made for a three junction array with a series LC load,
L=0.1, C=10, B.=0, Ig=2. (4.2a) - Average noise strength=0.125. (4.2b) -

Average noise strength=0.156.
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Time Series of Coherence
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Fig. 4.2 continued - Coherence plotted against time for four different noise
strengths. Coherence takes the value 1 when the array is in the in-phase
state. These time series were made for a three junction array with a series
LC load, L=0.1, C=10, B.=0, Ig=2. (4.2c) - Average noise strength=0.187.
(4.2d) - Average noise strength=0.25.



strengths. In the absence of any external noise, the array would remain in
the in-phase solution and the coherence would be a constant line with a
value of one. When a small amount of external noise is added the
coherence hovers around a value of one but occasionally makes an
excursion away from the in-phase state (see Fig. 4.2a). These excursions are
much like the intermittent bursts described by Pomeau and Manneville.28
As the noise level is increased the frequency and duration of the
intermittent bursts increases (see Fig. 4.2b,c,d). Thus one should expect
intermittent behavior form these arrays when they are biased in a regime
where the in-phase state is the only solution and it is barely stable. The

effects of noise will be discussed further in section 6.

Since the in-phase state is probably the most important dynamical state
from a technological point of view we conclude this section with a
discussion of the conditions under which the in-phase solution is most
stable. Referring to the stability plots of Fig. 4.1 one can see that the in-phase
state is almost universally most stable for =1 and 1<Ig<2. The in-phase
state is either unstable or barely stable when B¢ or Ig become large. In these

limits when, the in-phase state is barely stable, intermittent behavior can be

expected. The bias current, Ig, can easily be adjusted but 3 is fixed when the

junctions are fabricated. Thus the most important design criterion to

achieve stable, in-phase oscillations is to make junctions with Be=1. The

next section builds on this analysis and considers what is happening right at

the instabilities.



§5. Transitions between Solutions

When one of the solutions loses stability, the system makes a transition
to another solution. This process is called a bifurcation. Some commonly
known bifurcations such as symmetry breaking and period doubling appear
in our arrays. The high symmetry of the Josephson junction arrays also

results in some rather unusual bifurcations which will be discussed below.

In the previous section the stability of the the in-phase solution was
examined. The arguments used there can be generalized to analyze the
stability of any periodic solution. To linear order the perturbations to a
periodic solution always obey a set of linear differential equation with
periodic coefficients. The solutions to these equations have Floquet form,
ePty(t), where %(t) is a periodic function. A derivation of this result for the
general case of a d-dimensional equation is given in appendix B. The
periodic solution is stable as long as all of the Floquet exponents are
negative. A bifurcation occurs if any one of the (complex) Floquet
exponents crosses the imaginary axis so that its real part changes from

negative to positive.

Simple bifurcations
In the absence of special constraints or any underlying symmetry, there

are only three ways in which the solution can lose stability as a single
parameter is varied (see Fig. 5.1). The three possibilities are a saddle node
bifurcation, where a single exponent crosses the imaginary axis at Im(p)=0; a
period doubling bifurcation, where a single exponent crosses the imaginary
axis at Im{p)=r/T; and a Hopf bifurcation, where a complex conjugate pair of
exponents cross the imaginary axis anywhere else. Other bifurcations can

appear when there is a symmetry present in the problem 2%
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Fig. 5.1 (a) - The three generic, codimension-one bifurcations (period
doubling, saddle-node, and Hopf) occur as a single Floquet exponent
crosses the imaginary axis at in/T, 0, and as a complex conjugate pair
respectively. (b) - Two multiple bifurcations in which many Floquet
exponents cross the imaginary axis together were observed at Im(p)=n/T
and Im(p)=0.
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These bifurcations generally manifest themselves as abrupt changes in
the observables of the system. Figure 5.2 shows two current-voltage curves
that were calculated for arrays with three junctions and B=0. The solid line
in figure 5.2a is the calculated voltage as a function of current for the
junction array shown in the inset. The dashed lines in the figure are the
numerically determined in-phase solution and the approximation to the
antiphase solution that was discussed in section 3. In this case the load is
designed to be inductive at all of the relevant frequencies so the analysis of
the last section tells us that the in-phase state should be stable. The figure
agrees with this prediction. Figure 5.2b shows the same curves for a three
junction array shunted by a capacitor. In this case the analysis of section 4
states that the in-phase state should be unstable. Again, the figure agrees
with this prediction and shows that the antiphase solution is stable for high
bias currents. However, for bias currents near the critical current the
antiphase solution also becomes unstable and there is a kink visible in the

current-voltage curve. This kink corresponds to a bifurcation.

By taking phase portraits of the motion on both sides of the kink we have
determined that it signals a symmetry breaking bifurcation. The symmetry
that is broken is a permutation symmetry; the equations are unchanged by
the interchange of any two junctions. At the symmetry breaking bifurcation
a Floquet exponent crosses the imaginary axis at Im(p)=r/T. This is the
symmetry breaking bifurcation that must precede a period doubling
bifurcation as Swift and Wiesenfeld described.30 Figure 5.3 shows some
phase portraits of the dynamics. In these portraits a closed trajectory
corresponds to periodic motion. The sequence of phase portraits shows the
symmetry breaking followed by a cascade of period-doubling bifurcations
and eventually leading to chaos. At each period doubling a Floquet
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Fig. 5.2 (a) - Current-voltage curve for a three junction array with an
inductive load, L=3, and a blocking capacitor, C=5. The dashed lines
represent the in-phase and antiphase solutions. The curve shows that
the in-phase solution is stable for an inductive load. (b) - Current-
voltage curve for a three junction array with a capacitive load, C=3. This
figure shows that the antiphase solution is stable at high bias for a

capacitive load.

48



sin(¢y)

{a) (b} (c)

(d) (e) (f) Pomcane”

Fig. 5.3 Figures a-e are phase portraits of the motion, in the vicinity of
the bifurcation seen in Fig. 5.2b, showing symmetry breaking followed by
a period doubling cascade. The portraits are projections of the trajectory
in phase space onto the sin{¢,) vs. sin(@,) plane. Figure 2f is a Poincare

section of chaotic motion showing the fractal structure of the strange
attractor.
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exponent crosses the imaginary axis at Im(p)=n/T. Figure 5.3f is a Poincare
section of the chaotic motion that shows the fractal structure of the strange

attractor.

When the array is shunted by a series LC load, the simulations show that
the in-phase and anti-phase solutions exchange stability in a way that
produces a hysteresis loop in the current-voltage curve, as shown in Fig. 5.4.
The reactance of the load at the Josephson frequency goes from capacitive to
inductive as the bias current is increased, causing the transitions. Beginning
at low bias current the anti-phase solution remains stable, as the bias current
is increased, until the fundamental Josephson frequency of the anti-phase
solution exceeds the LC resonant frequency (wg=(LC)"1/2) and the load
becomes inductive. At that point a Floquet exponent crosses the imaginary
axis at Im(p)=0 and the system jumps to the in-phase solution. This is a
saddle node bifurcation. When the system jumps to the in-phase state, the
fundamental Josephson oscillation jumps to a higher frequency. This
makes the load look more inductive. The in-phase solution will thus
remain stable until the bias current is decreased to the point at which the
fundamental Josephson frequency of the in-phase is less than the LC
resonant frequency, and the load looks capacitive once again. At this point
the system suffers another saddle node bifurcation and returns to the

antiphase state.

Memory cells

The hysteresis loop in Fig. 5.4 suggests that Josephson junction arrays
could be used to construct a memory cell. The system would be biased so
that both the in-phase solution and the antiphase solution are stable. A bit
of information would be represented by whether the system was in the in-

phase or antiphase state. To write the in-phase state the bias current would
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Fig. 5.4 Current-voltage curve for a three junction array shunted by a
series LC circuit. C=5, L=0.1 The dashed lines represent the in-phase

and the antiphase solutions. The arrow on the right indicates the value
of wr=(LC)1/2=V2. This figure shows the hysteresis between the in-phase

and anti-phase solutions.
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be temporarily increased above the point where the antiphase state loses
stability and then decreased to the normal bias point where both solutions
are stable. This would leave the system in the in-phase solution. Similarly
the antiphase state could be written by temporarily decreasing the bias
current. The memory cell could be read by either detecting the voltage
across the array or by detecting the ac oscillations produced by the array.
This would be an unusual memory cell in the sense that information

would be stored in the form of a dynamical state instead of a static quantity.

Multiple bifurcations
The simple bifurcations are the ones you expect to find when there is no

special symmetry in the problem. When a symmetry is present, there exists
the possibility of a multiple bifurcation where several Floquet exponents
cross the imaginary axis simultaneously.3] In the present problem of series
arrays, there is a permutation symmetry: any transformation of Eqn. 2.6
which exchanges two junctions leaves the circuit equations unchanged. It
follows that if (¢1,¢2,...,¢j,(pk,...,(pN) is a solution then so is
((pl,cpz,...,cpk,cpj,...,(pN), as are all of the other N! permutation related solutions.
Of course, all of these solutions may not be distinct. If all Nt permutations
give the same solution, then this is a symmetric solution: this is just what
we have been calling the in-phase solution. On the other hand, if a solution
is not invariant with respect to all N! permutations of the {py}, then we call
it a symmetry-broken solution. For instance, the antiphase solution and the

split solution are symmetry-broken solutions.

In the analysis of the stability of the in-phase state we noted that the N-1
equations (4.2) that govern the relative coordinates are identical. This
means that the N-1 associated Floquet exponents are all equal, and when the

in-phase state loses stability these exponents all cross the imaginary axis
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simultaneously. In our simulations multiple exponents have been
observed crossing the imaginary axis at Im(p)=0 and at Im(p)=n/T (see Fig.
5.1). When the in-phase state loses stability via a multiple bifurcation at
Im(p)=0 the array assumes a symmetry-broken, antiphase solution. At this
point at least (N-1)! stable solutions simultaneously appear. When the in-
phase solution loses stability via a multiple bifurcation at Im(p)=n/T, the
array assumes a symmetry-broken split solution. Here N!/(a!(N-a)!) new,
symmetry related solutions appear, where o is the integer part of N/2. Thus
the consequence of having many Floquet exponents cross the imaginary axis
simultaneously seems to be a tremendous increase in the number of new
solutions that appear. This phenomena seems to be a common occurrence

in dynamical systems with many coupled degrees of freedom.
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§6. Noise Driven Fluctuations of the In-phase State

There is an interest in exploiting the high frequency oscillations of
Josephson junctions to construct generators of millimeter wave radiation.
Ideally, arrays of Josephson junctions oscillating in the in-phase state would
generate a single, stable frequency. However, inevitable fluctuations in the
circuit give the output a finite linewidth. This linewidth limits the practical
utility of the arrays. The form of these fluctuations and the resulting

linewidth are the focus of this section.

It has long been recognized that if the fluctuations at each junction of an
array are independent, then the total fluctuations across the array are the
incoherent sum of the fluctuations at the individual junctions. This leads
to the result that the voltage fluctuations across an array scale like VN 21
This narrowing of the linewidth in coherent arrays has been observed
experimentally.32 The upshot of this scaling is that the larger, more
powerful arrays have a purer spectral output, which is a very desirable
consequence from the practical point of view. Below a calculation of the
form of the fluctuations in the limit of small external noise is presented.
This calculation builds on the results obtained from the stability analysis of

the in-phase state.

The response of the in-phase state to a small perturbation was calculated
in section 4. It was shown there that a perturbation decays rapidly far away
from any instability but that as an instability is approached perturbations
decay more slowly. Right at the bifurcation perturbations take an infinitely
long time to decay (Re(p)=0). In this section these results are extended to

the case where the in-phase state is repeatedly perturbed by some external
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noise source, such as thermal noise. The deviations from the in-phase state
caused by the external noise are called the fluctuations of the system. Here
the power spectrum of these fluctuations is calculated and it is shown that

the fluctuations increase as a bifurcation is approached.

For a series array with a matched resistive load, the equations for the

dynamics including noise are,

Bcéﬁk+¢k+sin(q>k)+1ﬁz;pj = B (D+EL(D)  k=1..N 6.1
!

Where the usual reduced units have been employed. The random terms
Ex(t) and & (t) represent the noise generated in the kth junction and the load
respectively. One unavoidable source of noise is the Johnson noise |
associated with the resistors in the equivalent circuit of the array. In this
case the noise sources act independently at each resistor, <€k(t)>=0,

<Ep (1)>=0, <EK(DEK (t)>=Tpdkk'8(t-t), <€L(IEL(t)>=Tpd(t-t'}/N, and
<EK(EL(t)>=0, where Tp is the normalized bath temperature,

Tp=4ekgT /hlc.

The in-phase solution, 9x=0¢, describes a closed trajectory (a limit cycle)
in phase space. The fluctuations can either be along the in-phase trajectory
(phase fluctuations) or transverse to the in-phase trajectory (transverse
fluctuations). There is a fundamental difference between these two types of
fluctuations. Deviations transverse to the trajectory decay with time
because the in-phase trajectory is a stable solution. The transverse
fluctuations are most pronounced when the in-phase state is least stable.
Deviations along the trajectory do not decay because of a symmetry in the
problem. This symmetry is the invariance of the system with respect to
translations in time (this is an autonomous system). Fluctuations along the

trajectory essentially shift the origin of time and do not decay. They
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represent the diffusion of the system along the stable trajectory. Asis
shown below the power spectrum of these two types of fluctuations have a

different form.

Both types of fluctuations can be visualized in the phase space for the
dynamics. A representation of the 2N dimensional phase space is
illustrated in Fig. 6.1. The closed curve represents the in-phase trajectory.
Phase fluctuations, v, describe deviations tangent to this trajectory while
transverse fluctuations, x, describe deviations in the 2N-1 directions

transverse to the trajectory.

Since phase fluctuations correspond to shifts in the origin of time they
alter an observable such as the voltage so that it takes the form,
V()=V(t+y(t)), where Vy(t) is the noise-free voltage and y(t) are the phase
fluctuations. The effect that the phase fluctuations have on the linewidth

can be seen by writing the noise-free voltage in a Fourier series,
Vo()=Zagel®t. With the phase fluctuations included V(t) becomes,

V(t)=§ameim{t+‘l’). Here each Fourier component of the noise-free solution
is multiplied by a fluctuating factor, el®V. Thus the lineshape of the
Fourier component at frequency ® is determined by the square of the
Fourier transform of el®V, The consequence of this is that the phase
fluctuations cause the array to generate a spread of frequencies instead of a

single well defined frequency.

The second type of fluctuations come from the noise kicking the system
transverse to the noise-free solution. Mathematically the transverse

fluctuations are described by adding a term to the noise-free voltage,
V(D=Vo(D+Vy(t). These fluctuations effect only the amplitude of the

oscillations, not the frequency.
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Fig. 6.1. - Representation of the in-phase solution in phase space
indicating how the phase fluctuations and the transverse fluctuations
describe the deviations from the in-phase solution. For this system the
dynamics take place on an N dimensional cylinder where the variables
@k are periodic and the variables @) can take on any value. The in-phase
solution describes a closed trajectory on this N-cylinder. The phase
fluctuations are the deviations tangent to the in-phase trajectory and the
transverse fluctuations are the deviations transverse to the trajectory.
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Small noise approximation

When the noise is small, the deviations from the in-phase solution are

likewise small so consider a solution to Eqn. (1) of the form Q=g (t}+Mk.

The linearized equations for Ny are,

Bk + ik + COS(9o)c + L2y = &() + EL(Y) 62
j

This approximation relies on linearizing the equations about a stable, noise-

free solution. This implies that the results obtained here are only valid

when the noise is sufficiently small that it does not perturb the system too

far from the noise-free solution. For example, it has been reported that

larger noise can lead to hopping between coexisting stable solutions.33 The

results presented here cannot account for such behavior.

Equation 6.2 can be simplified by once again taking advantage of the
permutation symmetry. A transform is made to the natural coordinates of
this system, which are the mean coordinate #=(1 /IN)Znk, and the N-1

relative coordinates, {k=Nk-Nk+1. The linearized equations then become,

Belk + Lk + cos(9o)lk = Ek-Ek1 6.3a
Bot + 20 + COS((o)® = —ng + &L 6.3b

As we have said before, this transformatxon decouples all N coordinates in
the problem. Special attention should be given to © since it is the variable
that describes the fluctuations across the entire array. These are the

fluctuations that appear in a generator output.

Neglecting noise for a moment, consider the homogeneous solutions to
Eqn. 6.3. These solutions describe how an impulse perturbation to the in-
phase solution evolves. Since Eqn. 6.3 is linear with periodic coefficients we

know from Floquet theory that the homogeneous solutions have the form,
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ePty(t), where x(t) is a periodic function with the same period as @g(t). The
Floquet exponent, p, specifies the rate of decay of an impulse perturbation.

In particular the two homogeneous solutions to Eqn. 6.3b are,

U ot/B,
ti=¢o  and m=¢ao(t)f Z —dt' 6.4
(Po(t)

Here ¥, is periodic (p=0) and corresponds to a perturbation along the in-
phase solution. When a small perturbation of the form €9y, is added to the
in-phase solution, the result is equivalent to translating the origin of time
by the small quantity g, ¢o+EPg =~ 9o(t+€). Because of this property 9 plays
a special role in the analysis, namely, we identify the inhomogeneous
solution of Eqn. 6.3b associated with ) as the phase fluctuations. When the
in-phase solution is stable all of the other homogeneous solutions to Eqn.
6.3 decay exponentially (p<0). These other inhomogeneous solutions of

Eqn. 6.3 are then identified as the transverse fluctuations.

Solving for the inhomogeneous solutions to Eqn. 6.3 in terms of the
homogeneous solutions, and inverting the transformation to the relative

and mean coordinates, one obtains an approximate solution to Eqn. 6.1 of

the form Q=0 (t+y)+xx where

LAY B0 (M) Y orp,
v = I Nk [e dt"dt’ 6.5a

3 o2V $5(t")
C
: (-;Gz EctEL) G0 1 N1
xk=mf k dt - L >0t +-_Z(Nq)cq 6.5b
-21'/B¢ Ng=1 q=k
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The details of this calculation appear in appendix C. Here Cq are the
inhomogeneous solutions to Eqn. 6.3a which, unfortunately, must be
calculated numerically. The procedure for doing this is described in

appendix B.

Previously researchers have used a simpler approximation for the

phase fluctuations,8 namely,
y=[E(t)dt 6.6

where &(t) is random noise. This approximation arrives at the result that
the phase fluctuations cause a spread in the oscillation frequency of the
array with a Lorentzian lineshape but it completely neglects the dynamics.
Equation 6.5 includes the dynamics of the system and it also describes the
contribution of the transverse fluctuations which were previously

neglected.

One experimentally accessible variable that exhibits both phase and

transverse fluctuations is the voltage across any single junction of the array.

In the normalized units this voltage is, Vk(t)=@o{t+y)+xy. Phase
fluctuations enter the voltage oscillations through the term, Qolt+y), and
cause a broadening of the linewidth of these oscillations. As was stated
above the lineshape of the Fourier component of ¢ at frequency o is given
by the square of the Fourier transform of the fluctuating function, eloy,
where v is determined from Eqn. 6.5. All of the transverse fluctuations of
this voltage have the same form. They are inhomogeneous solutions to
noise driven equations whose homogeneous solutions are of Floquet form.
Solutions of this sort were studied by Wiesenfeld.34 He showed that these
terms have a power spectrum that is the sum of Lorentzians whose shape is
determined by the quantity pT, where p is the Floquet exponent of a

homogeneous solution, and T is the period of the noise-free oscillations.
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L
There is one Lorentzian contributed at each Fourier component of 9 by

every homogeneous solution. The Lorentzian's width is proportional to pT
and its amplitude is inversely proportional to pT. This means that features
in the power spectrum will become tall and narrow whenever pT

approaches zero. This happens near any bifurcation.

This phenomena, which has been observed experimentally in other
systems (including chemical, electrical and optical experiments),35 is called
the noisy precursor to a bifurcation. It has been demonstrated that the
power spectrum has certain universal scaling properties close to the
bifurcation.3¢ The bifurcations of the in-phase solution correspond to
instabilities where all of the junctions no longer oscillate identically. At this
instability the (N-1)! antiphase solutions appear. Thus the power spectrum
of an individual junction of the array consists of a peaks that correspond to
the basic oscillations of the junctions which have been broadened by phase
fluctuations plus noise bumps which correspond to the decay of the
transverse perturbations. As an instability is approached the noise bumps

become more prominent in the power spectrum.

For an rf generator application it is most important to consider how the
fluctuations effect the total voltage across the array. For small noise the

voltage across the whole array is,

e (LY BB $o(t)
N & dr 67

V(t) = Ngo(t+y) + d.(t) f
B e-2t'/Bc

Note that the transverse fluctuations of the total voltage depend only on the
mean coordinate, 9. This leads to the surprising result that the noise

bumps which correspond to instabilities where the array loses coherence
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appear in the power spectrum of an individual junction of the array but do
not appear in the power spectrum of the total voltage across the array. The
power spectrum of the total voltage consists of two components. The first is
the broadening of the linewidth of the oscillations due to phase fluctuations
which was described above. The other component is the noise bump due to
the transverse fluctuations. The transverse fluctuations contribute

Lorentzians centered at the Fourier components of ¢ to the power

spectrum. The amplitude and width of these Lorentzians are governed by
the dimensionless quantity, pT, where p=-2/B.. For small B¢ and large T
(large oscillation periods correspond to low bias currents), the noise bumps
will be very broad so the transverse fluctuations contribute an essentially
flat component to the power spectrum. In this case the linewidth will be

due predominantly to the phase fluctuations. This is illustrated in Fig. 6.2a.

For large P¢ or large bias currents (small T), the transverse fluctuations con-
tribute narrow Lorentzians at the Fourier components of ¢o(t) which add to
the phase fluctuations to make up the linewidth (see Fig. 6.2b). A
maximally stable in-phase state (f-=0.75 and Ig=2.3) produces a power

spectrum qualitatively like that shown in Fig. 6.2a.

In summary, the total voltage across an array of coherently oscillating
Josephson junctions exhibits two fundamentally different types of
fluctuations, each of which makes its own characteristic type of contribution
to the power spectrum. Phase fluctuations broaden the peaks in the power
spectrum that correspond to the basic oscillations of the junctions and are
primarily responsible for the linewidth of these oscillations. Transverse
fluctuations contribute Lorentzian shaped noise bumps to the power

spectrum at the fundamental and harmonics of the basic Josephson

oscillations. These noise bumps become larger and narrower as T/f¢

increases, making a contribution to the linewidth for large B and large bias
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Fig. 6.2 - Power spectrum of the total voltage across the array showing
the contributions of the phase and transverse fluctuations. (6.2a) - Large
T/Bc where the transverse fluctuations make an nearly flat contribution

to the power spectrum. (6.2b) - Small T/B. where the contributions to
the power spectrum are peaked around the fundamental and the
harmonics of the basic Josephson oscillations.
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currents. The approach of the instability which corresponds to the array
losing coherence is responsible for the appearance of noise bumps in the
power spectra of the individual junction voltages but the impending
instability does not effect the power spectrum of the total voltage across the
array. Finally it must be emphasized that all of this analysis has assumed
that the in-phase solution was stable and that the noise was small. When
either of these conditions are not met nonlinear effects will have to be taken

into account.
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§7. Parametric Amplifiers

Modest parametric amplification using single Josephson junctions was
first achieved in the sixties.3¢ Later, researchers suggested that the
performance of these amplifiers could be improved significantly by using
series arrays of junctions in place of a single junction. Unfortunately, the
gain of these amplifiers was disappointingly small and they exhibited a
mysterious noise rise phenomena. Here we suggest that the limited success
of the arrays as parametric amplifiers might be understood in terms of the
array dynamics. This section concludes with a proposal for a high gain

parametric amplifier.

Parametric amplification is a nonlinear interaction by which power is
transferred from a "pump” oscillation to a "signal” oscillation. Recently
Bryant, Wiesenfeld, and McNamara recognized that the process of
parametric amplification can be usefully described in the language of
bifurcation theory.37 The advantage of approaching the problem this way is
that certain universal properties, which have to do with the type of
bifurcation involved, become apparent in this approach. In these terms a
parametric amplifier consists of a pump oscillation that is tuned near a
bifurcation. To linear order, perturbations to the pump have Floquet form,
ePty(t). Since the pump is near an instability, some of these perturbations
decay very slowly (p=0). The system is tuned so that the signal has the
correct frequency to excite these slowly decaying perturbations. This causes
the perturbations to grow and in response to the applied signal which is the

basis of the amplification.

In 1975 Feldman, Parrish, and Chiao suggested that series arrays of

Josephson junctions could be used to build a high gain, low noise
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parametric amplifier.38 In the analysis that they presented, they assumed
that all of the junctions remained in the in-phase state. Other solutions
such as the antiphase solution were not considered. When the experiments
did not agree with their predictions they suggested that, for some
unexplained reason, only a fraction of the junctions were active in
producing the nonlinear effects. Our analysis of the stability of the in-phase
state suggests they may have been operating in a regime where the in-phase
state was unstable. This would make it appear as if not all the junctions
were participating. If the in-phase state can be stabilized then the high gain,

low noise amplifier that they envisioned might be realized.

In order to design a parametric amplifier it is important to understand
the nature of the bifurcation that provides the amplification. Some
bifurcations are more suitable for parametric amplifier applications than
others. To achieve the greatest amplification it is important to use an
instability that causes a large voltage response at the output of the array.
The multiple bifurcations described in section 5 would make a rather poor
amplifier because in that case the phases of the junctions tend to cancel out,

resulting in very small response at the output of the array.

The best bifurcation to use for an amplifier would be one in which all of
the junctions oscillate identically throughout the bifurcation. The response
at such a bifurcation would be greater because all of the the junctions would
contribute constructively to the response. This kind of "coherent
bifurcation” would be one where only a single Floquet exponent crosses the
imaginary axis and where the in-phase state would be stable on both sides of
the bifurcation. After a bit of searching, bifurcations of this sort were

observed for ac driven arrays with a capacitive load.
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The circuit diagram for the array which exhibits these bifurcations is
shown in Fig. 7.1. Itis a series array of N junctions driven by an ac current
(the pump) and shunted by a capacitor. In normalized units the equations

that describe the dynamics of this circuit are

Beiok(t) + k() + sin(py () + cv = Acos(wt) k=1,2,.N 7.1a
N
V= 21 O 7.1b
j= -

This is essentially the same circuit as that studied by Feldman et al. except
here B and the shunt capacitor have been chosen to stabilize the in-phase
state. Numerical simulations of these equations show that there are two

different coherent bifurcations were observed for this system with the

parameter values Bc=1, w=0.5, and ¢=6/N. One is a period doubling
bifurcation which occurs at A~4. By tuning the system close to this
bifurcation one could construct a parametric amplifier that operates in the
conventional three photon mode.37 This would amplify signals with a
frequency near n/T. The other coherent bifurcation is a symmetry breaking
bifurcation which occurs at A~3.2. This bifurcation could be used to operate
an amplifier in the recently described six photon mode.37 In this case signals
with a frequency of 2n/T would be amplified. In between these two
bifurcations this system exhibits a virtual Hopf phenomena where a
complex conjugate pair of Floquet exponenets travel just to the left of the
imaginary axis from Im(p)=0 to Im(p)=in/T. The virtual Hopf phenomena
is nearly a Hopf bifurcation and might be used to construct a parametric

amplifier at frequencies between n/T and 2x/T.

Finally there is the question of noise rise in parametric amplifiers. The
noise rise has been attributed to noise driven hopping among solutions. In
this picture external noise kicks the system among one of several stable

solutions. This hopping results in a Lorentzian shaped noise bump
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Fig. 7.1 - Circuit diagram of the proposed high gain, low noise parametric
amplifier. Here B.=1, ®=0.5, A=3.2, and c=6/N where N is the number of

junctions.
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centered at zero frequency in the power spectrum of the dynamics. In the
case of a period doubling bifurcation there are two branches of the same
solution and the external noise causes the system to hop from one branch to
the other. For the coherent symmetry breaking bifurcation the two
symmetry broken solutions are disjoint in phase space so the hopping takes
place over larger distances. If these arguments about the noise rise are
correct then this implies that there would be less of a noise rise at the
symmetry breaking bifurcation than at the period doubling bifurcation.
Since the amplifier described above exhibits both bifurcations it could be

used to test this noise rise theory.
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§8. Nonidentical Junctions

Thus far we have dealt with the idealized case of identical junctions.
This simplification was made in order to make the problem tractable for
arrays with arbitrarily large numbers of junctions. Of course, in any real
array, all of the junctions would have slightly different critical currents,
shunt resistances, and capacitances. The hope is that when these deviations

are small that the results presented above remain qualitatively valid.

To gain some insight into the effect that nonidentical junction
parameters have on the in-phase oscillations we have performed
simulations of 100 junction arrays. When all of the junctions are identical
the in-phase state of the array is stable with a Floquet exponent of -0.4. The
parameters of the junctions are then altered so the junctions are not
identical and the simulations are run again. Figures 8.1a-8.1e are movies of
nonidentical junction arrays in which we have introduced flat distributions
of 0%, 5%, 10%, 15%, and 20% in the critical currents, the shunt resistances
and the capacitances of the junctions. The lengths of the lines that show the
positions of the phases are proportional to the critical currents of the
junctions. Thermal noise was also included in the simulations. When the

noise terms are included in Eqn. 2.6 we have,
Bedk(t) + ¢k(t) + sin(x(t) + IL(t) = I + &k(t) k=1,2,..N  8.1a

V(D) = 2 ek(t) = FIL) 8.1b
k=1

where E)(t) are the uncorrelated noise currents, <€y (t) §l(t')>=(4/7)0y)15(t-
t), and y=h1./(ekgT)=1150. This level of thermal noise corresponds to

critical currents of 104 Amps and an operating temperature of 4.2°K. Notice

that the oscillations remain largely in-phase when a 15% spread in the
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Fig. 8.1 - Movie of the solution for 100 junction arrays with nonidentical
parameters and a matched resistive load, R=N. Each sequence has a
different percentage spread in the junction parameters (critical current,
capacitance, and shunt resistance). (7a) - 0% spread in the junction
parameters. (7b) - 5%. (7¢) - 10%. (7d) - 15%. (7e) - 20%. In each case
Ig=2.3, Bc=.75, and y=1150.
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junction parameters is introduced. These simulations show that the in-
phase solution can remain stable when modest junction mismatches and

thermal noise are included.

Calculating the stability of the mismatched junction arrays is more
laborious than it was for the identical junction arrays. This is because we
can no longer use the symmetry to reduce the problem the way we did in
section 4. Nevertheless the stability calculation could be done using the
method described in appendix B. This involves numerically determining
the solution to the array equations over one cycle and then constructing a
return map. The Floquet exponents are proportional to the logarithm of the
eigenvalues of the return map so the in-phase state is stable when all of the
eigenvalues have a magnitude less than one. When all of the junctions are
identical there are many degenerate Floquet exponents. When the
junctions are slightly different this degeneracy is broken and one expects the
exponents to be scattered around the degenerate, identical junction values.
One can use the following theorem (due to Gershgorin)3? to estimate the
largest eigenvalue of the return map in the nonidentical junction case.

I Amax| € max(E| Ajj+8i;1) 8.2
-l

where Ajj are the matrix elements for an array with identical junctions and
8jj represent the deviations. On average the deviations have a random
nature and add incoherently. This would tend to increase the largest
eigenvalue and thus make the in-phase state less stable. The greater the
number of junctions, the more deviations there would be to add in Eqn. 8.2
so the greater the largest exponent would likely be. Thus the stability of the
in-phase state would decrease as the mismatches between the junctions

increases and as the number of nonidentical junctions increases. The
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simulations agree with this picture qualitatively but a quantitative

numerical study of this effect has not been made.

There are two main consequences of having nonidentical junctions. The
first is that the power that an array can deliver decreases as the mismatches
increase. This can be seen in Fig. 8.1 where the destructive interference of
the junctions increases as the spread in parameters increases. The other
consequence of using nonidentical junctions is that the fluctuations
increase. As we discussed in section 6, the fluctuations depend on the
Floquet exponents. These exponents come closer to the critical value
(Re(p)=0) as the mismatches increase and as the number of junctions
increase. This causes the fluctuations to increase. Thus, for the local
oscillator and parametric amplifier applications it is advantageous to make

the junctions as identical as possible.
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§9. Coupled 1-d, 2-d, and 3-d arrays

In this section the stability of the in-phase state for more complex arrays
are discussed. Examples of these arrays include coupled 1-d arrays (Fig. 9.1a),
2-d arrays (Fig. 9.1b), and 3-d arrays (Fig. 9.1c). In each of these cases it will be
assumed that all of the junctions of an array are identical and that no
magnetic field is applied. For this configuration, each junction is coupled to
every other junction just as they were for the series arrays. Ironically it is
easier to determine the stability of these arrays than it was for the series
arrays that were discussed in section 4. This is because we can use symmetry

arguments to show that the in-phase state is not linearly stable.

First consider the coupled 1-d array of Fig. 9.1a. This array has been
proposed as a microwave generator.1> Here we assume that the junctions
are spaced far enough apart that radiative and quasiparticle coupling
mechanisms can be neglected. The resistors are included in the circuit to
break the quantum interference and thereby to reduce the magnetic field
dependence of the circuit. The equations that conserve current at every
junction are

Bedij + ¢ij + sin{ey) = I 9.1
where i=1,2,..N, j=1,2,..M, and I; is the current flowing through the jth
column. In addition to these equations are the equations that equate the
voltage across every column and the equation that conserves the total

current.
V=Z ¢ij+ LR j=1.2,...,.M 9.2
i

=2 9.3

Equations 9.2 and 9.3 can be used to eliminate the variables I; and V. The

dynamics of the array are then described by

74



X
X
X
X
X

X
p 4
X

K
X

X
X
X

| YA (= SV EVIEVEV VN |
X T4
x X
X i
X X
X ) X
-

4
.

b 4
X
X
X
h 4

LW
L)
N
EaY

4
.
X
X

x
X
X
X
b 4

X
b 4
X
x
X

(c)

Fig. 9.1 - More complex Josephson junction arrays. (9.1a) Coupled 1-d
array. (9.1b) 2-array. (9.1c) 3-d array. Here each x represents an entire
junction, not just the supercurrent component.
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2 6i+BR Y ¢
j L

Betpij + §ij + Sin(oy) - - 0 9.4

MR * R
This equation shows that every junction is coupled to every other junction.
In order for this array to function as a microwave generator each junction
must oscillate identically, @j=¢. In this case Eqn. 9.4 reduces to

Beo + Po + sin(go) = Ie/M 9.5
This equation is equivalent to the one that describes the dynamics of a
single junction biased with a current of Ig/M. To calculate the stability of
this in-phase solution one adds a small perturbation to the in-phase

solution, ¢o+1jj, and then solves for the linear equations that describe the

evolution of the perturbations. The linearized equations for the

_Z_ nij Z ull

1] + | -
MR R

We make two successive transformations of this equation. The first is to

perturbations are

0 9.6

Betiif + Mij + Mijcos(go) -

the relative coordinates, Cij=ﬂij"ﬂi+1,j (i=1,2,..,N-1, j=1,2,..M), and the
mean column coordinates, 13]'=}.:"1ij (j=1,2,..M). This transformation results
;

in the following equations,

Bolij + Cij + Lijcos(go) = 0 97
o,

S + 8 + B,cos -k ___ 10 9.8
BcB; j i (o) "R R

Next we transform Eqn. 9.8 to the relative column coordinates, ¥j=0j-0+1

(j=1,2,...,M-1), and the total mean coordinate, ®=Z0y.

Belij + Cij + 5ijcos(po) = 0 9.9
Bc® + ® + Pcos(gy) =0 Q.10
Beij + lgﬂ?j + ¥605(go) = 0 9.11

These are the equations that need to be solved to determine the stability of

this array. For the series arrays we solved equations like these numerically.
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In this case, however, some of the solutions can be determined without any
numerical calculation. By differentiating Eqn. 9.5 one finds,

Be@o + $o + ¢CcOS(@o) = 0 9.12
Thus one of the solutions to Egn. 9.9 and Eqn. 9.10 is Cij=¢‘=(f’oo The Floquet
exponent that describes the decay of this solution is zero. Since Eqn. 99 is a
set of (N-1)M identical equations, there are (N-1)M+1 degenerate Floquet
exponents all equal to zero. We also know from Floquet theory that the
exponents must satisfy the condition p1+p2=-1/B.. Therefore there must

also be (N-1)M+1 Floguet exponents equal to -1/B¢. If all of the other

Floquet exponents are less than zero then the in-phase solution of the
coupled 1-d array is (linearly) neutrally stable. If any of the other Floquet are
greater that zero then the in-phase solution is unstable. In either case, the

in-phase solution is not linearly stable.

Notice that it was possible to make a statement about the stability of the
solution without specifying the particular characteristics of the junctions
and without performing any numerical calculations. The essential feature
of this argument is that it is possible to find a transformation that makes
some of the equations that describe the perturbations to the in-phase
solution equivalent to an equation that describes the evolution of a
perturbation to the solution of an autonomous system. Autonomous
systems always have at least one zero Floquet exponent because they are
invariant with respect to translations in time. The autonomous system in

this case is Eqn. 9.5 which describes the dynamics of a single junction.
In order to stabilize the in-phase oscillations one must alter the solution

so that it no longer maps onto an autonomous system. For instance adding

a load across the array alters the structure of the in-phase solution (see Fig.
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Load

Fig. 9.2 - The coupled 1-d array of Fig. 9.1a is altered by adding a shunt
impedance. This changes the structure of the in-phase solution so that
~ it no longer decouples into independent subsystems. The shunt may
stabilize the in-phase oscillations.
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9.2). With the load included, Eqn. 9.9 is unchanged but the in-phase
solution is now defined by,

M(BcBo + o + sin(po)) + 1L =18 9.13
where Iy is the current that flows through the load. In this case ¢y no
longer solves Eqn. 9.9 and a full numerical calculation of the stability is
required. This leaves open the possibility that regimes can be found where

the in-phase solution is stable.

Before the load was added the array was symmetric in the sense that
every path that the bias current could choose to follow was identical. In this
case we found that the symmetric (in-phase) solution was not linearly
stable. After the load was added a symmetry was broken because not all of
the paths that the bias current could choose were equivalent. Once this
symmetry is broken it is possible that the symmetric solution can be linearly

stable.

Next consider the 2-d array of Fig. 9.1b. This system has been studied
extensively for low bias currents where it can be described by the 2-d X-Y
model.40 Here we consider higher bias currents which cause oscillations to
arise in the junctions due to the ac Josephson effect. In particular, we
examine the stability of the phase-locked solution where all of the junctions
which lie along the direction of the bias current oscillate identically. This
will be a zero temperature, zero applied magnetic field analysis, and all of
the junctions will be assumed to be identical. Even with these simplifying

assumptions the system still displays complex dynamics.
It is convenient to work with the phases of the superconductors in this

case rather that the phase differences across the Josephson junction. Figure

9.3 shows an array of junctions and the two superconducting electrodes
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Fig. 9.3 A 2-d array of Josephson junctions. The cross shaped regions

represent islands of superconductors.
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which the supply the bias current. The array consists of cross shaped islands
of superconductors. There are M islands in each row and N islands in each
column. Josephson junctions are formed at the boundaries of the islands
where the superconductors are weakly coupled. For simplicity we will
describe the state of each island and each electrode by a single phase, v. We
will choose the phase of the upper electrode to be zero. The equations for

the array can then be written as

> Bel¥i¥a) + (ij-¥i) + sin(yy=vin) = O 9.14a

kl=n.n, of ij

2 Bol¥1)) + (1)) + sin(yy) = -Ig 9.14b
J

where the first equation is the statement of the conservation of current at
each island (the sum is over the nearest neighbors of the island at position
i,j) and the second equation states that the bias current, Ig, must be equal to
the total current flowing through the array (the sum is over the first row).
There is one second order equation for every superconducting island, and

one more second order equation for the unspecified electrode.

There is a symmetric, phase-locked solution to these equations where a
current of Ig/M flows through each column of the array and each junction
along the columns oscillates identically. We will call this solution the in-
phase solution for a 2-d array. The currents that flow through the junction
depend on the difference of the phases of the adjacent superconductors so
the statement that the current flowing through every column is the same is
equivalent to saying that the phase difference between any pair of junctions
along a column is the same, ¥j-¥(-1)j = YkVk-D1 = 9o- In the in-phase

solution the junctions perpendicular to the direction of the applied bias

current do not oscillate at all (y;=¥;;j+1)). The equation for @ is,
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Be(@o) + (9o) + sin{go) = Ia/M 9.15
The stability of the in-phase solution can be studied by considering small
perturbations to it. The linearized equations for the evolution of these

perturbations are,
2 {BelHifik) + ikl + X (MiNk)cos(go) +

kl=n.n.of ij k=n.n. of ij
2 (mym =0 9.16a
l=n.n. of ij
2. Befi1j + 1i1j + M1;c08(o) = O 9.16b

!

These are linear differential equations with periodic coefficients. Again,
from Floquet theory we know that the solutions to these equations have the

form, ePiy(t), where p is the Floquet exponent and x(t) is a periodic function.

It is convenient to eliminate one column of the 1 coordinates in favor of

a row coordinate, 9j=Injj. When this transformation is made, N of the
v

linear equations that must be solved have the form
ﬂcéi +1‘.5‘E + Dicos(¢o) = 0 i=1,2,...,.N .17

These are a special subset of the equations for the evolution of the
perturbations because they can be readily solved. We observe that one of
the solutions to Eqn. 9.17 is 9j=¢. (One can check this by differentiating
Eqn. 9.15) This is a periodic solution so the Floquet exponent is zero. In fact,
this same solution solves all N of the above equations [9.17] so there are N
Floquet exponents equal to zero. These N zero Floquet exponents imply

that each row of the array acts as an autonomous subsystem.
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In experiments on 2-d arrays performed at Delft by van der Zant, Muller,
Geerlings, Harmans, and Mooij there is evidence that the rows do indeed
act independently.4l In these experiments the current-voltage (I-V)
characteristics of carefully constructed 2-d arrays of Josephson junctions
were measured. As the bias current was increased, steps in the voltage
appear (see Fig. 9.4). There seem to be as many voltage steps as there are
rows in the arrays. This implies that each row acts as a unit and starts
oscillating independently. Here we suggest that one could further test the
idea that the rows act as units by shunting these 2-d arrays with a series
inductor-capacitor (LC) load. If the rows act as units then a shunted 2-d
array of junctions would behave like a series array, and a hysteresis loop
will appear in the I-V curve as the system makes transitions from the in-

phase to the antiphase state.

The stability analysis above does not tell us what the observed solution of
a 2-d array will be, it only tells us that the in-phase solution is not linearly
stable. Since the in-phase solution is the only solution with the full
symmetry of the equations, the observed solution must be a symmetry
broken solution. Symmetry broken solutions are always degenerate so the

observed solution cannot be unique.

It may possible to modify the 2-d array, by shunting it with a load, so that
the in-phase solution is linearly stable. Note that if the 2-d array is shunted
by a load, then éo will no longer be a solution to Eqn. 9.17 and the N Floquet
exponents that were shown to be zero above could have any value. This
allows for the possibility that all of the Floquet exponents could be less than
zero and the in-phase solution could be linearly stable. In order to

determine which load will stabilize the in-phase state of the 2-d array one
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Fig. 9.4 Current-voltage curve showing steps in the voltage that suggest
that the rows of a 2-d array act as independent units. (From van der
Zant, Muller, Geerlings, Harmans, and Mooij.)



would have to go through the same sort of computer calculations that were

described in section 4.

By arguments similar to those given above one can show that the in-
phase state of a 3-d array shown in Fig 9.1c is not linearly stable. In this case
the plane coordinates, ®x=Zgjjk, can be used to map the linearized stability
equations onto an autonomous single junction problem. There are as many
zero Floquet exponents as there are planes in the array and one expects the

planes to act as independent subsystems.

The essential feature of the argument that shows that the in-phase
solution is not stable is that the bias current must be divided equally among
identical elements. If some nonidentical elements such as a shunt across
the array are included in the system, then the argument fails and the in-
phase solution might be stable. Thus, if the array is perfectly symmetric
then the symmetric (in-phase) solution is not linearly stable but if the array

is not perfectly symmetric then the in-phase solution can be linearly stable.
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§10. Conclusions

The dynamics of Josephson junction arrays is a topic that lies at the
intersection of the fields of nonlinear dynamics and Josephson junction
technology. Such arrays are high dimensional nonlinear systems of a type
for which little was previously known. Numerical simulations were used
to examine this system and several unusual dynamical states were
discovered. Three distinct types of periodic solutions to the array equations
were observed as well as period doubled and chaotic solutions. One of the
periodic solutions is the symmetric in-phase solution where all of the
junctions oscillate identically. The other two periodic solutions are
symmetry-broken solutions where all of the junctions do not oscillate
identically. The symmetry-broken solutions are highly degenerate. As
many as (N-1)! stable solutions can coex-ist for an array of N junctions.
These many stable solutions crowd phase space and make the system
sensitive to noise. Understanding the stability of the several solutions and

the transitions between them is vital to the design of useful devices.

From the technological point of view the most useful dynamical state of
Josephson junction arrays is the in-phase state where all of the junctions
oscillate identically. A detailed analysis of the stability of the in-phase state
was given and the fluctuations about the in-phase state were described. The
transitions among the periodic solutions was also discussed in terms of the
language of bifurcation theory. This system exhibits both simple and
multiple bifurcations. Using this analysis, the conditions for maximal
stability of series junction arrays intended as mm-wave generators were
established. The most important design criterion is that Be=1 for stable in-
phase oscillations. The other technological application that was discussed is

parametric amplification. It was shown that parametric amplifiers basically
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exploit the dynamical instabilities of the system. Here a proposal is made
for the design of a high gain parametric amplifier that uses a previously
undocumented bifurcation. Finally more complex arrays than series arrays
were considered. For symmetric arrays consisting of only identical
junctions the symmetric (in-phase) solution is not linearly stable and
symmetry broken solutions must be observed. The symmetric solution can

be stable only if the array is not perfectly symmetric.
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Appendix A: The nature of chaos

Chaotic solutions look complicated; there seems to be no simple way to
specify a chaotic solution. In fact, Shaw showed that as a chaotic solution
evolves it is constantly generating information.4?2 Thus to describe the
entire evolution of a chaotic solution would require an infinite amount of
information. However, in order to specify a solution all one needs to do is
give a differential equation along with a set of initial conditions. To see
where the infinite amount of information is lurking when a chaotic
solution is specified by a differential equation we need to examine both the
nature of the equations and the initial conditions. We proceed by discussing
two seemingly unrelated subjects: random number generators and

uncomputable numbers.

Random number generators

When people are trying to model a random process they usually use a
random number generator. A simplistic, though commonly used random
number generator, is the linear congruential generator,20

Xk+1 = axg + ¢ (mod m) Al
This recurrence relation takes the seed (xy), multiplies it by a large constant
(a), adds another constant (¢), and then maps the result into the interval
(0,m). When the constants are properly chosen this relation produces an
apparently random string of numbers between 0 and m. Better random
number generators exist but this one has the two essential features of all
random number generators. These two features are stretching (multiplying

by a large constant) and folding ( mapping the result into a compact region).
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The stretching and folding make the random number generator sensitive
to the initial seed {x) that is chosen. This sensitivity to initial conditions is
illustrated in Fig. Al. The two dots in the first frame of the figure represent
two slightly different initial choices. At each stretching these two solutions
move farther and farther apart. No matter how close the two dots start out

they eventually diverge.

Sometimes nature constructs crude random number generators of its
own. The same processes of stretching and folding can then make these
natural systems sensitive to initial conditions. Naturally occurring random
number generators are called chaotic systems. Figure A2 shows the chaotic
dynamics exhibited by a Josephson junction array. There is no apparent
pattern to this solution. By taking a cross section of the solution we can see
its delicate layered structure (see Fig. A3). This looks similar to the cross

section of a croissant since both are produced by the same type of stretching

and folding.

Uncomputable numbers

A number is computable if there exists a finite computer program to
compute that number. For instance, 7, , e, and V2 are computable numbers
since you can write finite computer programs to calculate these numbers.
Indeed every number that has ever been specified, and every number that
will ever be specified is computable by definition. This leaves one
wondering if there are any uncomputable numbers. The existence of the
uncomputable numbers can be demonstrated by an argument that roughly
parallels the proof of Godel's famous incompleteness theorem.43 The
incompleteness theorem states that there are truths in any formal system of
reasoning that are not theorems of that system of reasoning. The parallel

argument is the following.
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Fig. Al - Random number generator use stretching and folding to
produce an apparently random sequence. Sensitivity to the initial
conditions is illustrated by the two dots in the figure. They start out
close together but as the stretching and folding proceeds the dots
diverge.
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Fig. A3 - Cross section of a chaotic solution (often called a Poincare
section) showing the layered (fractal) structure of the solution.
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Suppose that a certain computer understands 100 instructions. Give each
instruction a two number code, 00 through 99. Then any program can be
represented as an integer which is just the two number instruction codes
strung together. If a number is computable then it can be computed on our
hypothetical computer by Church's thesis.43 So for every computable
number there is a computer program, and for every computer program
there is an integer. Since the integers form a set of measure zero on the real
axis, the computable numbers must also form a set of measure zero. This
means that almost every number is uncomputable and cannot be specified

with a finite amount of effort.

A consequence of the existence of uncomputable numbers is the existence
of uncomputable functions. A function can be described by a differential

equation along with a set of initial conditions. If the initial condition

contain an uncomputable number (and almost every number is
uncomputable) then since no finite computer program exists which can
specify the initial condition, no finite computer program exists that specifies
the solution. Thus, almost every function described by differential
equations is uncomputable. Normally this does not cause a problem
because regular equations are not sensitive to the initial conditions.
Changing the initial conditions slightly only changes the solution slightly.
Chaotic solutions, however, are sensitive to the initial conditions.
Changing the initial conditions of a chaotic solution slightly, however,
eventually changes the solution dramatically. The consequence of all this is
that anything that is sensitive to initial conditions will have chaotic

solutions that cannot be specified with a finite amount of effort.
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The existence of these uncomputable, chaotic solutions creates a problem
for anyone wishing to calculate a solution using perturbation theory. A
perturbation theory is a finite algorithm for finding corrections to a known
solution. The finite algorithm and the known solution can be specified by a
finite computer program so the end product of any perturbation theory is a
computable function. Thus chaotic solutions can not be found by
perturbation theory. We usually say the perturbation theory "breaks down"

before the chaotic solution is reached.
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Appendix B: Stability of N-dimensional periodic solutions

This appendix describes how to analyze the stability of a periodic solution
of a N-dimensional equation. We assume that we already have the vector
solution, x, to some nonlinear N-dimensional equation.

x = F(x,t) B1
To find the stability of this solution we add a small perturbation, v, to x and
then linearize the Eqn. B1. This results in a linear system with periodic
coefficients.

v = f(tjv B2
where v is an N component column vector and f(t)=0F;/dxj is the Jacobian
matrix of first partial derivatives of F. Because x is periodig, f is also
periodic, f(t)=f(t+T). Equation B2 can be analyzed with an extension of

standard Floquet theory to the N-dimensional case. For further discussion

of this topic see Nonlinear Oscillations by Nayef and Mook.25

From the theory of linear differential equations we know that there is a
complete set of N linearly independent vector solutions, vj(t) j=1,2,....N, to

this equation. In general it is difficult to calculate the complete solutions,

v]-(!:), analytically. It is straightforward, however, to calculate the solutions

numerically and then use return maps to analyze their stability. To do this
first we note that if vj(t) is a solution then so is vj(t+T). Since the

functions Vj(f) form a complete set we can write,
vk(t+T)= iAjij(t) k=1,...,N B3
J=1

The matrix, A, is called a return map. It specifies how the vj{t)'s evolve in

time. A return map can be constructed by taking any linearly independent

set of column vectors, vj, as initial conditions, and numerically integrating
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the equations over one period. The initial vectors, vj(t=0), and the final

vectors, vj(T), can then be arranged into matrices that are related by the

expression,

vi(T) [ vn(T) =A vi(0) [ vn(0) B4

It is convenient to choose the initial vectors so that they form the identity

matrix. Then the return map is simply
A= vi(T) |- vn(T) B5

In general when we construct A in this way it will not be in diagonal
form. If the eigenvalues are all distinct we can put A into its diagonal form,
B, by applying a transformation P.

B=P1AP B6
Both B and P can be determined numerically. Once we have B and P we can
define a new set of vectors, uk, by the transformation,
vj(t) = Puj(t). B7
The matrix B tells us how these new variables evolve in time,
u]'(t+T) = Buj(t). B8
Since B is diagonal, we can write this in component form,
u;(t+T) = Aju;(t), B9
where the j are the eigenvalues of B. Let Aj= ePT, and multiply the last
equation by e P(t+T), then we have,
e‘F}(H‘T) u]'(t+T) = e'P}uj(t). B10
This equation tells us that the function, e'B'fuj(t), is periodic with period T.
Let's call this periodic function Xj(t)- Now we can write the N linearly

independent solutions to Eqn. 1 in the traditional form of Floquet theory,
uj(t)= ept xj(t). B11
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where the pj are the Floquet exponents,

pj= ln(lj)/T, Bi2
and the xj(t) are periodic functions,
xj(t) = eptp vjb). B13

Now that the perturbations to the original solution have been put into
Floquet form we can say that the periodic solution, x, will be stable when all

of the Floquet exponents are negative.
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Appendix C: Some mathematical details

This appendix describes how one solves inhomogeneous differential
equations such as those encountered in the section on fluctuations. The

equation that must be solved is,
BcB + 28 + cos(po)d = jﬁzﬁk +EL C1
k

where ¢, solves the nonlinear equation,

Bcffio + 2([)0 + Sln(q)o) = Ip 724
By differentiating Eqn. C2 one can see that one of the homogeneous
solutions to Eqn. C1is ¢5. Once one homogeneous solution is known the
other can be found by the method of reduction of order.44 Briefly this
method consists of assuming a solution to Eqn. C1 of the form y(£)@.
Substituting this into the equation results in a first order equation for y(t)
which can be solved by separation of variables. The two homogeneous
solutions to Eqn. C1 are then,
' g-217Be
Bii=00 and 13_;_=({'3o(t)] =~ dt’ C3
$o(t’)

The inhomogeneous solution to Eqn. C1 can be constructed from the
homogeneous solutions. First write Eqn. C1 in matrix form as a coupled set
of first order equations in the form,

X=Ax +E C4
where x is a vector and A is a Matrix. The solution to any set of coupled first
order equations in this form is
x= QJP-1Edt C5
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where @ is a matrix whose columns are the vector solutions to the
homogeneous equation
Xo = AXo Cé
Using these concepts one can show that the inhomogeneous solution to

Eqn. Clis,

dt"dt’

t (LY BB o (t) v 21"/
o = ebof Nk ©

o217 o3 (t")

LY &G () 1t ors,
+¢o] Nk dt'fe dt’

o218 ¢35 (1)

This inhomogeneous solution can be separated into phase fluctuations and
transverse fluctuations.

If the noise were to somehow only to perturb the system along the in-
phase trajectory then the inhomogeneous solution would be

o0 ] 2 dt C8
Yy

where &, is the noise that only perturbs the system only the trajectory.
These are the phase fluctuations. Furthermore, if the noise were only to
perturb the system transverse to the in-phase trajectory then the

inhomogeneous solution would be

&,

where & is the noise that only perturbs the system transverse to the

trajectory. These are the transverse fluctuations.
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The noise terms given in Eqn. C1 constitute the noise along and the noise
transverse to the trajectory, &, +&,= (1/ N)§§k+E,.L. Using this constraint and
comparing Eqn. C8 and Egn. C9 with Eqn. C7 we see that the phase
fluctuations, y, and the transverse fluctuations, x, associated with Egn. C1

are,

: (@ Ex+ELP o (1) ['e-zwac

W= - 5 dt"dt' C10
ﬂce-zt'/Bc dS(t")
t% Ex+EL) 9o
x=mf k dt C11
Bce-Et'/Bc

100



References

1. B. D. Josephson, Phys. Lett. 1 251 (1962).

2. P. W. Anderson and J. M. Rowell, Phys. Rev. Lett. 10 230 (1963); S.
Shapiro, Phys. Rev. Lett. 11 80 (1963); J. M. Rowell, Phys. Rev. Lett. 11 200
(1963). ,

3. B. A. Huberman, J. P. Crutchfield, and N. Packard, Appl. Phys. Lett. 37 750
(1980); R. C.Kautz, J. Appl. Phys. 52 624 (1981).

4. E. Fermi, Collected Papers Vol. II (University of Chicago Press, Chicago,
1965) p. 978.

5. A.]. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion
(Springer-Verlag, New York,1983).

6. B. V. Chirikov, Phys. Rep. 52 265 (1979); T. Hogg and B. A. Huberman,
Phys. Rev. A 29 275 (1984); J. Keeler and J. D. Farmer, Physica 23D 413 (1987);
P. N. Strenski and 5. Doniach, J. Appl. Phys. 57 867 (1985).

7. R L. Kautz, C. A. Hamilton, F. L. Lloyd, IEEE Trans. MAG-23 883 (1987);
IEEE Trans. IM-36 258 {1987).

8. A. K. Jain, K. K. Likharev, J. E. Lukens, and J. E. Sauvageau, Phys. Rep.
109, 310 (1984).

9. P. Hadley and M. R. Beasley, Appl. Phys. Lett. 50 621 (1987).
10. P. Hadley and M. R. Beasley, Jap. J. of Appl. Phys. 26 1419 (1987).

11. P. Hadley, M. R. Beasley and K. Wiesenfeld, Appl. Phys. Lett. 52 1619
(1988).

12. P. Hadley, M. R. Beasley and K. Wiesenfeld, Phys. Rev. B 38 8712 (1988).

13. P. Hadley, M. R. Beasley and K. Wiesenfeld, IEEE Trans. Mag. (to be
published).

101



14. W. C. Stewart, Appl. Phys. Lett. 12 277 (1968); D. E. McCumber, ]. Appl.
Phys. 39 3113 (1960).

15. K. K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon
and Breach Science Publishers, New York, 1986).

16. T. Van Duzer and C. W. Turner, Principles of Superconductive Devices
and Circuits (Elsevier, New York, 1981), p.170.

17. S. Shapiro, Phys. Rev. Lett. 11 80 (1963).

18. ].J. Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems
(Interscience Publishers, Inc., New York, 1950).

19. D. R. Tilley, Phys. Lett. 33A 205 (1970).

20. W. H. Press, B. P. Flannery, 5. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes (Cambridge University Press, New York, 1986).

21. T. D. Clark, Phys. Lett. 27 585 (1968).

22. T.F. Finnegan and S. Wahlsten, Appl. Phys. Lett. 21 541 (1972).

23. K. Wiesenfeld and P. Hadley, (to be published).

24. M. ]J. Feigenbaum, J. Stat. Phys. 19 25 (1978); 21 669 (1979).

25. A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations (Wiley, New
York, 1979); W. Magnus and S. Winkler, Hill's Equation (Dover, New York,

1979).

26. N. N. Bogoliubov and 1. A. Mitropolskii, Asymptotic Methods in the
Theory of Nonlinear Oscillations (Hindustan Pub. Corp., Delhi, 1961).

27. G.S.Lee and S. E. Schwarz, . Appl. Phys. 55 1035 (1984).
28. Y. Pomeau and P. Manneville, Commun. Math. Phys. 74 189 (1980).
29. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical

Systems, and Bifurcations of Vector Fields (Springer-Verlag, New York,
1983).

102



30. J. W. Swift and K. Wiesenfeld, Phys. Rev. Lett. 52 705 (1984).
31. See for example, M. Golubitsky and J. Guckenheimer, eds.,
Multiparameter Bifurcation Theory, Contemporary Mathematics 56,

(American Mathematical Society, Providence, 1986).

32. C. Varmazis, R. D. Sandell, A. K. Jain, and J. E. Lukens, Appl. Phys. Lett.
33 357 (1987).

33. R. F. Miracky, J. Clarke, and R. H. Koch, Phys. Rev. Lett. 50, 856 (1983).

34. K. Wiesenfeld, J. Stat. Phys. 38 1071 (1985).

35. K. Wiesenfeld, "Pericd Doubling Bifurcations, What Good Are They
Anyway?" Noise in Nonlinear Dynamical Systems F. Moss ed. (Cambridge

University Press, Cambridge, 1988).

36. H. Zimmer, Appl. Phys. Lett. 10 193 (1967); A. S. Clorfeine, Proc. IEEE 52
844 (1964).

37. P. Bryant, K. Wiesenfeld, and B. McNamara, J. Appl. Phys. 62 2898 (1987).

38. M.]. Feldman, P. T. Parrish, and R. Y. Chiao, ] Appl. Phys. 46 4031 (1975).

39. J. H. Wilkinson, The Algebraic Eigenvalue Problem (Oxford University
Press, New York, 1965). '

40. C.J. Lobb, D. W. Abraham, and M. Tinkham, Phys. Rev. B 27 150 (1983).

41. H. S.]. van der Zant, C. J. Muller, L. J. Geerligs, C. J. P. M. Harmans, and
J. E. Mooji, Phys. Rev. B 38 5154 (1988).

42. R. Shaw, Zeitschrift fiir Naturforschung 36a 80 (1981).

43. G. S. Boolos and R. C. Jeffrey, Computability and Logic (Cambridge
University Press, New York, 1980).

44. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods For
Scientists and Engineers (McGraw-Hill, New York, 1978).

103



